Integrative analysis-based identification and validation of a prognostic immune cell infiltration-based model for patients with advanced gastric cancer

比例危险模型 肿瘤科 内科学 医学 癌症 逻辑回归 队列 免疫组织化学
作者
Siwei Pan,Qi Gao,Qingchuan Chen,Pengfei Liu,Yuen Tan,Funan Liu,XU Hui-mian
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:101: 108258-108258 被引量:5
标识
DOI:10.1016/j.intimp.2021.108258
摘要

Advanced gastric cancer (GC) remains difficult to conduct individualized prognostic evaluations owing to the highly heterogeneous nature and the low level of immune cell infiltration (ICI) within GC tumors. This study thus sought to develop a model capable of classifying GC patients according to the degree of tumor ICI and gauging prognosis.The degree of ICI in GC patients from the GSE15459, GSE57303, and GSE62254 datasets were estimated, and these values were used to group patients via an unsupervised clustering approach, after which ICI cluster-related genes were identified the association with prognosis through Cox and LASSO regression analyses. The primary risk genes were then verified by immunohistochemical staining of GC tumor tissue samples.570 patients were clustered into three clusters and 289 ICI cluster-related genes were identified. A prognostic model based on the expression of six crucial ICI risk genes (CXCL11, RBPMS2, LOC400043, JCHAIN, CT83, and ORM1) wa constructed. Patients identified as being high risk based upon the model have poorer clinical features and survival outcomes compared to the other patients. Adjuvant intervention was found to be more beneficial for patients expressing high levels of RBPMS2, JCHAIN, or ORM1. Furthermore, patients expressing low levels of JCHAIN or CT83 in GC tumor tissues were verified to exhibit a significantly better prognosis in a CMU cohort.Advanced GC patients were successfully grouped into clusters based on the degree of intratumoral ICI, and a prognostic evaluation model based on 6 ICI risk genes was developed and validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跳糖应助小橙子采纳,获得10
1秒前
搜集达人应助夸克的诗意采纳,获得10
1秒前
2秒前
zai发布了新的文献求助10
2秒前
睡到自然醒完成签到,获得积分10
2秒前
3秒前
dafhluih完成签到,获得积分10
5秒前
小小完成签到 ,获得积分10
5秒前
情怀应助义气尔安采纳,获得10
6秒前
Evan完成签到,获得积分20
6秒前
顺心雅柏完成签到,获得积分10
7秒前
无花果应助这里是小豪采纳,获得10
8秒前
苏卿应助斯文媚颜采纳,获得10
8秒前
香蕉觅云应助暮辞采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
Lucas应助TKMY采纳,获得10
9秒前
9秒前
科目三应助科研通管家采纳,获得30
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
薰硝壤应助科研通管家采纳,获得10
9秒前
梵星应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得30
9秒前
MAIDANG完成签到,获得积分10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
10秒前
orixero应助科研通管家采纳,获得30
10秒前
10秒前
细心蚂蚁完成签到,获得积分10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152625
求助须知:如何正确求助?哪些是违规求助? 2803842
关于积分的说明 7855937
捐赠科研通 2461519
什么是DOI,文献DOI怎么找? 1310346
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782