Integrative analysis-based identification and validation of a prognostic immune cell infiltration-based model for patients with advanced gastric cancer

比例危险模型 肿瘤科 内科学 医学 癌症 逻辑回归 队列 免疫组织化学
作者
Siwei Pan,Qi Gao,Qingchuan Chen,Pengfei Liu,Yuen Tan,Funan Liu,XU Hui-mian
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:101: 108258-108258 被引量:6
标识
DOI:10.1016/j.intimp.2021.108258
摘要

Advanced gastric cancer (GC) remains difficult to conduct individualized prognostic evaluations owing to the highly heterogeneous nature and the low level of immune cell infiltration (ICI) within GC tumors. This study thus sought to develop a model capable of classifying GC patients according to the degree of tumor ICI and gauging prognosis.The degree of ICI in GC patients from the GSE15459, GSE57303, and GSE62254 datasets were estimated, and these values were used to group patients via an unsupervised clustering approach, after which ICI cluster-related genes were identified the association with prognosis through Cox and LASSO regression analyses. The primary risk genes were then verified by immunohistochemical staining of GC tumor tissue samples.570 patients were clustered into three clusters and 289 ICI cluster-related genes were identified. A prognostic model based on the expression of six crucial ICI risk genes (CXCL11, RBPMS2, LOC400043, JCHAIN, CT83, and ORM1) wa constructed. Patients identified as being high risk based upon the model have poorer clinical features and survival outcomes compared to the other patients. Adjuvant intervention was found to be more beneficial for patients expressing high levels of RBPMS2, JCHAIN, or ORM1. Furthermore, patients expressing low levels of JCHAIN or CT83 in GC tumor tissues were verified to exhibit a significantly better prognosis in a CMU cohort.Advanced GC patients were successfully grouped into clusters based on the degree of intratumoral ICI, and a prognostic evaluation model based on 6 ICI risk genes was developed and validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚星发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
星空发布了新的文献求助10
4秒前
文献发布了新的文献求助30
6秒前
7秒前
7秒前
8秒前
10秒前
11秒前
Rachel完成签到,获得积分10
12秒前
codwest完成签到,获得积分10
12秒前
13秒前
13秒前
越旻完成签到,获得积分10
14秒前
zxj完成签到,获得积分10
14秒前
14秒前
喜欢猫发布了新的文献求助10
14秒前
酷炫的爆米花完成签到,获得积分10
15秒前
李爱国应助西海沉采纳,获得10
15秒前
Orange应助方法采纳,获得10
15秒前
15秒前
沉静亿先完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
研友_5Zl9D8发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
20秒前
20秒前
烂漫的煎饼完成签到 ,获得积分10
22秒前
22秒前
22秒前
SC234发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690