Surprise signals in the supplementary eye field: rectified prediction errors drive exploration-exploitation transitions

惊喜 眼球运动 扫视 心理学 计算机科学 任务(项目管理) 神经科学 人工智能 沟通 管理 经济
作者
Norihiko Kawaguchi,Kazuhiro Sakamoto,Naohiro Saito,Yoshito Furusawa,Jun Tanji,Masashi Aoki,Hajime Mushiake
出处
期刊:Journal of Neurophysiology [American Physiological Society]
卷期号:113 (3): 1001-1014 被引量:20
标识
DOI:10.1152/jn.00128.2014
摘要

Visual search is coordinated adaptively by monitoring and predicting the environment. The supplementary eye field (SEF) plays a role in oculomotor control and outcome evaluation. However, it is not clear whether the SEF is involved in adjusting behavioral modes based on preceding feedback. We hypothesized that the SEF drives exploration-exploitation transitions by generating “surprise signals” or rectified prediction errors, which reflect differences between predicted and actual outcomes. To test this hypothesis, we introduced an oculomotor two-target search task in which monkeys were required to find two valid targets among four identical stimuli. After they detected the valid targets, they exploited their knowledge of target locations to obtain a reward by choosing the two valid targets alternately. Behavioral analysis revealed two distinct types of oculomotor search patterns: exploration and exploitation. We found that two types of SEF neurons represented the surprise signals. The error-surprise neurons showed enhanced activity when the monkey received the first error feedback after the target pair change, and this activity was followed by an exploratory oculomotor search pattern. The correct-surprise neurons showed enhanced activity when the monkey received the first correct feedback after an error trial, and this increased activity was followed by an exploitative, fixed-type search pattern. Our findings suggest that error-surprise neurons are involved in the transition from exploitation to exploration and that correct-surprise neurons are involved in the transition from exploration to exploitation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽外套完成签到 ,获得积分10
1秒前
2秒前
欢喜紫槐发布了新的文献求助10
3秒前
温凊完成签到 ,获得积分10
3秒前
乐乐应助袁琴采纳,获得10
4秒前
坤坤完成签到,获得积分10
5秒前
6秒前
abiu完成签到,获得积分10
7秒前
nidhhog发布了新的文献求助10
7秒前
wangzai111发布了新的文献求助10
8秒前
周琦完成签到,获得积分10
9秒前
科研通AI2S应助郭晓峰采纳,获得10
9秒前
烟花应助wuhen采纳,获得10
10秒前
李健的小迷弟应助Wu采纳,获得20
10秒前
10秒前
小吴同志完成签到,获得积分10
11秒前
11秒前
12秒前
NI发布了新的文献求助10
12秒前
12秒前
13秒前
肆樂柒完成签到,获得积分10
13秒前
Jasper应助迷了路的猫采纳,获得10
14秒前
14秒前
14秒前
香蕉觅云应助伶俐皮卡丘采纳,获得10
14秒前
完美世界应助小牛牛采纳,获得10
15秒前
15秒前
姜建正发布了新的文献求助10
16秒前
景Q同学发布了新的文献求助10
16秒前
发疯的游子完成签到,获得积分10
16秒前
17秒前
烟花应助科研狗采纳,获得10
17秒前
无花果应助积极孤菱采纳,获得10
17秒前
京苏完成签到,获得积分10
17秒前
秋作完成签到,获得积分10
18秒前
19秒前
19秒前
ff完成签到 ,获得积分10
20秒前
呆瓜发布了新的文献求助10
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129513
求助须知:如何正确求助?哪些是违规求助? 2780318
关于积分的说明 7747496
捐赠科研通 2435637
什么是DOI,文献DOI怎么找? 1294181
科研通“疑难数据库(出版商)”最低求助积分说明 623590
版权声明 600570