DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

条件随机场 人工智能 计算机科学 卷积神经网络 增采样 帕斯卡(单位) 卷积(计算机科学) 模式识别(心理学) 分割 马尔可夫随机场 CRF公司 上下文图像分类 特征(语言学) 目标检测 特征提取 图像分割 联营 图像(数学) 人工神经网络 程序设计语言 哲学 语言学
作者
Liang-Chieh Chen,George Papandreou,Iasonas Kokkinos,Kevin Murphy,Alan Yuille
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:40 (4): 834-848 被引量:18926
标识
DOI:10.1109/tpami.2017.2699184
摘要

In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文白白完成签到,获得积分10
1秒前
ada发布了新的文献求助10
1秒前
pluto应助stop here采纳,获得200
1秒前
sg发布了新的文献求助10
2秒前
tk完成签到 ,获得积分10
2秒前
上官若男应助not采纳,获得20
3秒前
tanglu发布了新的文献求助10
3秒前
3秒前
jia发布了新的文献求助10
3秒前
欧阳振应助羊皮大哈采纳,获得10
4秒前
4秒前
4秒前
hsut-czq发布了新的文献求助10
5秒前
5秒前
6秒前
Sisyphus完成签到,获得积分10
6秒前
7秒前
tanmeng77完成签到,获得积分10
8秒前
8秒前
wwwwwww发布了新的文献求助10
8秒前
锐影灵析发布了新的文献求助10
9秒前
细辛发布了新的文献求助10
9秒前
ZZzz发布了新的文献求助10
9秒前
fantasy发布了新的文献求助30
10秒前
慕青应助背后大白采纳,获得10
10秒前
10秒前
11秒前
11秒前
搜集达人应助小老鼠采纳,获得10
11秒前
NexusExplorer应助zewangguo采纳,获得10
11秒前
Jasper应助zc采纳,获得10
12秒前
13秒前
jia完成签到,获得积分10
13秒前
XLeft完成签到 ,获得积分10
14秒前
14秒前
14秒前
小白菜完成签到 ,获得积分10
14秒前
15秒前
jagger发布了新的文献求助10
15秒前
充电宝应助Lone采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306