DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

条件随机场 人工智能 计算机科学 卷积神经网络 增采样 帕斯卡(单位) 卷积(计算机科学) 模式识别(心理学) 分割 马尔可夫随机场 CRF公司 上下文图像分类 特征(语言学) 目标检测 特征提取 图像分割 联营 图像(数学) 人工神经网络 语言学 哲学 程序设计语言
作者
Liang-Chieh Chen,George Papandreou,Iasonas Kokkinos,Kevin Murphy,Alan Yuille
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:40 (4): 834-848 被引量:20732
标识
DOI:10.1109/tpami.2017.2699184
摘要

In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我的小k8完成签到,获得积分20
1秒前
xuan发布了新的文献求助10
2秒前
2秒前
2秒前
炸鸡加热完成签到 ,获得积分10
2秒前
3秒前
我的小k8发布了新的文献求助10
3秒前
4秒前
TT木木完成签到,获得积分10
5秒前
企鹅发布了新的文献求助10
5秒前
6秒前
科研通AI6应助yongfeng采纳,获得10
6秒前
BowieHuang应助怕孤单的灵竹采纳,获得10
7秒前
温wen完成签到,获得积分10
7秒前
shushuwuwu发布了新的文献求助10
7秒前
8秒前
英俊的铭应助culiucabbage采纳,获得10
9秒前
9秒前
Hugo完成签到,获得积分10
10秒前
11秒前
wangqianyu发布了新的文献求助30
12秒前
12秒前
13秒前
13秒前
香蕉觅云应助gu采纳,获得10
14秒前
FashionBoy应助婷婷的大宝剑采纳,获得10
15秒前
哈哈鹿发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
7012发布了新的文献求助10
17秒前
英姑应助危机的道天采纳,获得10
19秒前
小明发布了新的文献求助10
19秒前
95发布了新的文献求助30
20秒前
石头发布了新的文献求助20
20秒前
20秒前
Johnwick发布了新的文献求助10
20秒前
21秒前
Sylvia完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487