DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

条件随机场 人工智能 计算机科学 卷积神经网络 增采样 帕斯卡(单位) 卷积(计算机科学) 模式识别(心理学) 分割 马尔可夫随机场 CRF公司 上下文图像分类 特征(语言学) 目标检测 特征提取 图像分割 联营 图像(数学) 人工神经网络 语言学 哲学 程序设计语言
作者
Liang-Chieh Chen,George Papandreou,Iasonas Kokkinos,Kevin Murphy,Alan Yuille
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:40 (4): 834-848 被引量:20732
标识
DOI:10.1109/tpami.2017.2699184
摘要

In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献达人发布了新的文献求助10
1秒前
1秒前
1秒前
外向听南完成签到,获得积分10
2秒前
ycp完成签到,获得积分10
3秒前
Elon发布了新的文献求助10
3秒前
聪聪忙忙应助舒舒采纳,获得10
3秒前
yile完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
huang发布了新的文献求助10
4秒前
4秒前
xxx完成签到 ,获得积分10
4秒前
王家宁666完成签到,获得积分10
4秒前
四月关注了科研通微信公众号
5秒前
89757完成签到,获得积分10
5秒前
杨逸尔完成签到,获得积分10
6秒前
彭于晏应助BrandNew。采纳,获得10
6秒前
ding应助你嵙这个期刊没买采纳,获得10
6秒前
orixero应助文献达人采纳,获得10
6秒前
6秒前
6秒前
陈婷婷发布了新的文献求助10
6秒前
univ发布了新的文献求助10
6秒前
two发布了新的文献求助20
7秒前
SciGPT应助风趣琦采纳,获得10
7秒前
7秒前
wanci应助理荒秽采纳,获得10
7秒前
7秒前
8秒前
彭于晏应助JacobDu666采纳,获得10
8秒前
9秒前
9秒前
lll完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI6应助Elon采纳,获得10
9秒前
9秒前
yiyi131发布了新的文献求助20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5404697
求助须知:如何正确求助?哪些是违规求助? 4523152
关于积分的说明 14092354
捐赠科研通 4436849
什么是DOI,文献DOI怎么找? 2435295
邀请新用户注册赠送积分活动 1427595
关于科研通互助平台的介绍 1405985