DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

条件随机场 人工智能 计算机科学 卷积神经网络 增采样 帕斯卡(单位) 卷积(计算机科学) 模式识别(心理学) 分割 马尔可夫随机场 CRF公司 上下文图像分类 特征(语言学) 目标检测 特征提取 图像分割 联营 图像(数学) 人工神经网络 程序设计语言 哲学 语言学
作者
Liang-Chieh Chen,George Papandreou,Iasonas Kokkinos,Kevin Murphy,Alan Yuille
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:40 (4): 834-848 被引量:18641
标识
DOI:10.1109/tpami.2017.2699184
摘要

In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助muhtar采纳,获得10
1秒前
保亮完成签到,获得积分10
3秒前
IDA发布了新的文献求助10
4秒前
4秒前
5秒前
幺幺零五完成签到,获得积分10
6秒前
李健的粉丝团团长应助lxy采纳,获得10
6秒前
Chen完成签到,获得积分10
6秒前
充电宝应助爱吃排骨的猫采纳,获得10
7秒前
大利发布了新的文献求助10
9秒前
scvrl完成签到,获得积分10
11秒前
阿夸发布了新的文献求助10
12秒前
刘佳敏完成签到 ,获得积分10
13秒前
落后十八发布了新的文献求助20
14秒前
14秒前
MZ完成签到,获得积分0
15秒前
完美世界应助sklh采纳,获得10
17秒前
Singularity应助pu采纳,获得10
17秒前
17秒前
李子维完成签到 ,获得积分10
18秒前
20秒前
lxy发布了新的文献求助10
20秒前
清风明月完成签到,获得积分10
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
淡然冬灵应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
劲秉应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得30
25秒前
芝麻应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得30
25秒前
所所应助科研通管家采纳,获得10
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
信号完成签到 ,获得积分10
25秒前
劲秉应助科研通管家采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669949
求助须知:如何正确求助?哪些是违规求助? 3227345
关于积分的说明 9775203
捐赠科研通 2937487
什么是DOI,文献DOI怎么找? 1609371
邀请新用户注册赠送积分活动 760295
科研通“疑难数据库(出版商)”最低求助积分说明 735772