DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

条件随机场 人工智能 计算机科学 卷积神经网络 增采样 帕斯卡(单位) 卷积(计算机科学) 模式识别(心理学) 分割 马尔可夫随机场 CRF公司 上下文图像分类 特征(语言学) 目标检测 特征提取 图像分割 联营 图像(数学) 人工神经网络 语言学 哲学 程序设计语言
作者
Liang-Chieh Chen,George Papandreou,Iasonas Kokkinos,Kevin Murphy,Alan Yuille
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:40 (4): 834-848 被引量:20732
标识
DOI:10.1109/tpami.2017.2699184
摘要

In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助默默善愁采纳,获得10
刚刚
huiliang完成签到,获得积分10
刚刚
kevin完成签到,获得积分10
1秒前
1秒前
1秒前
LMF完成签到 ,获得积分10
1秒前
浮游应助arcgen采纳,获得10
2秒前
清脆保温杯完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
科研通AI6应助miketyson采纳,获得10
5秒前
zhangsf88完成签到,获得积分10
5秒前
Noah完成签到 ,获得积分0
5秒前
tough发布了新的文献求助10
5秒前
5秒前
DQQ发布了新的文献求助30
6秒前
明亮紫易完成签到,获得积分10
6秒前
美好斓发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
烂漫的闭月完成签到,获得积分10
8秒前
充电宝应助111采纳,获得10
8秒前
DDDD发布了新的文献求助10
8秒前
Caroline发布了新的文献求助10
10秒前
999完成签到,获得积分10
10秒前
heyan发布了新的文献求助10
10秒前
梅梅也完成签到,获得积分10
11秒前
xxxxxxxxx完成签到 ,获得积分10
11秒前
彭晓雅完成签到,获得积分10
12秒前
12秒前
sjh完成签到,获得积分10
14秒前
DQQ完成签到,获得积分10
15秒前
16秒前
Momo01完成签到 ,获得积分10
17秒前
JamesPei应助sjh采纳,获得10
17秒前
浮华发布了新的文献求助10
18秒前
ZM完成签到,获得积分10
19秒前
李大刚发布了新的文献求助10
19秒前
852应助畅快的广山采纳,获得10
19秒前
15864140827完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569751
求助须知:如何正确求助?哪些是违规求助? 4654787
关于积分的说明 14710532
捐赠科研通 4595981
什么是DOI,文献DOI怎么找? 2522202
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1463987