Strategies for De-identification and Anonymization of Electronic Health Record Data for Use in Multicenter Research Studies

标识符 计算机科学 鉴定(生物学) 情报检索 唯一标识符 包裹体(矿物) 样品(材料) 保护 数据科学 数据挖掘 医学 心理学 植物 社会心理学 生物 色谱法 护理部 化学 程序设计语言
作者
Clete A. Kushida,Deborah L. Nichols,Rik Jadrnicek,Ric Miller,James J. Walsh,Kara S. Griffin
出处
期刊:Medical Care [Ovid Technologies (Wolters Kluwer)]
卷期号:50: S82-S101 被引量:106
标识
DOI:10.1097/mlr.0b013e3182585355
摘要

Background: De-identification and anonymization are strategies that are used to remove patient identifiers in electronic health record data. The use of these strategies in multicenter research studies is paramount in importance, given the need to share electronic health record data across multiple environments and institutions while safeguarding patient privacy. Methods: Systematic literature search using keywords of de-identify, deidentify, de-identification, deidentification, anonymize, anonymization, data scrubbing, and text scrubbing. Search was conducted up to June 30, 2011 and involved 6 different common literature databases. A total of 1798 prospective citations were identified, and 94 full-text articles met the criteria for review and the corresponding articles were obtained. Search results were supplemented by review of 26 additional full-text articles; a total of 120 full-text articles were reviewed. Results: A final sample of 45 articles met inclusion criteria for review and discussion. Articles were grouped into text, images, and biological sample categories. For text-based strategies, the approaches were segregated into heuristic, lexical, and pattern-based systems versus statistical learning-based systems. For images, approaches that de-identified photographic facial images and magnetic resonance image data were described. For biological samples, approaches that managed the identifiers linked with these samples were discussed, particularly with respect to meeting the anonymization requirements needed for Institutional Review Board exemption under the Common Rule. Conclusions: Current de-identification strategies have their limitations, and statistical learning-based systems have distinct advantages over other approaches for the de-identification of free text. True anonymization is challenging, and further work is needed in the areas of de-identification of datasets and protection of genetic information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人的沛山完成签到 ,获得积分10
1秒前
肯瑞恩哭哭完成签到,获得积分10
1秒前
南瓜难应助何必不曾采纳,获得20
1秒前
injuly完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
领导范儿应助曲绾绾采纳,获得10
5秒前
传奇3应助标致溪流采纳,获得10
6秒前
6秒前
阡陌完成签到 ,获得积分10
7秒前
Cuz完成签到,获得积分10
7秒前
xiaojcom应助猜猜我是谁采纳,获得10
8秒前
萧水白应助猜猜我是谁采纳,获得10
8秒前
田様应助土豪的不悔采纳,获得10
8秒前
yurong发布了新的文献求助10
8秒前
10秒前
ZSC完成签到,获得积分10
10秒前
嗷嗷嗷啊发布了新的文献求助10
10秒前
12秒前
曲绾绾发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
HUAHUA完成签到,获得积分10
19秒前
21秒前
Hellowa发布了新的文献求助10
22秒前
luyao970131发布了新的文献求助10
26秒前
可爱的函函应助Hai采纳,获得10
27秒前
zlf发布了新的文献求助10
27秒前
Jiang完成签到,获得积分10
27秒前
30秒前
30秒前
32秒前
打打应助yu小鱼采纳,获得10
32秒前
宇哈哈发布了新的文献求助20
33秒前
自来也发布了新的文献求助10
33秒前
眠眠清发布了新的文献求助10
35秒前
ding应助holmes采纳,获得10
36秒前
梅川枯枝完成签到 ,获得积分10
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161515
求助须知:如何正确求助?哪些是违规求助? 2812855
关于积分的说明 7897372
捐赠科研通 2471768
什么是DOI,文献DOI怎么找? 1316137
科研通“疑难数据库(出版商)”最低求助积分说明 631193
版权声明 602112