Logistic Regression: A Brief Primer

多重共线性 逻辑回归 统计 协变量 变量 回归诊断 计量经济学 过度拟合 罗伊特 线性回归 回归分析 单变量 离群值 数学 计算机科学 贝叶斯多元线性回归 机器学习 多元统计 人工神经网络
作者
Jill Stoltzfus
出处
期刊:Academic Emergency Medicine [Wiley]
卷期号:18 (10): 1099-1104 被引量:954
标识
DOI:10.1111/j.1553-2712.2011.01185.x
摘要

Regression techniques are versatile in their application to medical research because they can measure associations, predict outcomes, and control for confounding variable effects. As one such technique, logistic regression is an efficient and powerful way to analyze the effect of a group of independent variables on a binary outcome by quantifying each independent variable's unique contribution. Using components of linear regression reflected in the logit scale, logistic regression iteratively identifies the strongest linear combination of variables with the greatest probability of detecting the observed outcome. Important considerations when conducting logistic regression include selecting independent variables, ensuring that relevant assumptions are met, and choosing an appropriate model building strategy. For independent variable selection, one should be guided by such factors as accepted theory, previous empirical investigations, clinical considerations, and univariate statistical analyses, with acknowledgement of potential confounding variables that should be accounted for. Basic assumptions that must be met for logistic regression include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers. Additionally, there should be an adequate number of events per independent variable to avoid an overfit model, with commonly recommended minimum "rules of thumb" ranging from 10 to 20 events per covariate. Regarding model building strategies, the three general types are direct/standard, sequential/hierarchical, and stepwise/statistical, with each having a different emphasis and purpose. Before reaching definitive conclusions from the results of any of these methods, one should formally quantify the model's internal validity (i.e., replicability within the same data set) and external validity (i.e., generalizability beyond the current sample). The resulting logistic regression model's overall fit to the sample data is assessed using various goodness-of-fit measures, with better fit characterized by a smaller difference between observed and model-predicted values. Use of diagnostic statistics is also recommended to further assess the adequacy of the model. Finally, results for independent variables are typically reported as odds ratios (ORs) with 95% confidence intervals (CIs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
科研通AI5应助SiDi采纳,获得10
1秒前
2秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
英俊的铭应助TIWOSS采纳,获得10
6秒前
8秒前
9秒前
10秒前
dophin完成签到,获得积分0
10秒前
打打应助无私幼蓉采纳,获得10
10秒前
美女5语完成签到,获得积分10
10秒前
羊羊羊完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
内向书白发布了新的文献求助10
12秒前
coolkid完成签到 ,获得积分10
13秒前
13秒前
16秒前
shihuili发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
师霸发布了新的文献求助10
18秒前
科研通AI5应助budingman采纳,获得10
19秒前
内向书白完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
华仔应助国家栋梁采纳,获得10
20秒前
21秒前
21秒前
22秒前
林淼完成签到 ,获得积分10
22秒前
23秒前
成就缘分发布了新的文献求助10
23秒前
24秒前
无私幼蓉发布了新的文献求助10
25秒前
DaYongDan完成签到 ,获得积分10
25秒前
开朗穆发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
27秒前
shihuili完成签到,获得积分10
28秒前
面包圈发布了新的文献求助30
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664632
求助须知:如何正确求助?哪些是违规求助? 3224535
关于积分的说明 9758095
捐赠科研通 2934477
什么是DOI,文献DOI怎么找? 1606882
邀请新用户注册赠送积分活动 758897
科研通“疑难数据库(出版商)”最低求助积分说明 735053