材料科学
快离子导体
电解质
介电谱
阴极
卤化物
硫化物
复合数
电极
复合材料
降级(电信)
化学工程
电化学
无机化学
冶金
电子工程
物理化学
化学
工程类
作者
Jonghyeok Yun,Hong Rim Shin,Trung Dinh Hoang,Siwon Kim,Jae Hyuk Choi,Beomsu Kim,Hyuck Jung,Janghyuk Moon,Jong‐Won Lee
标识
DOI:10.1016/j.ensm.2023.102787
摘要
Recently, halide-type Li+ conductors have been revisited for their use in all-solid-state batteries (ASSBs) owing to their stability at high potentials. However, the realization of ASSBs is hindered by the fast performance decay of composite cathodes. From a comparative study using halide and sulfide solid electrolytes (SEs), herein, we reveal the critical degradation factors of halide-SE-based cathodes, which are different from the conventional findings of sulfide-SE-based cathodes. By using impedance decoupling combined with scanning spreading resistance microscopy and force spectroscopy, we elucidate the mechanisms behind the SE-dependent degradation of single-particle LiNi0.8Co0.1Mn0.1O2 (NCM) composite cathodes. Impedance analyses show that NCM-Li6PS5Cl (LPSCl) and NCM-Li3InCl6 (LIC) exhibit considerable increase in interfacial impedance and Li+-transport impedance, respectively, upon cycling. Based on the combined experimental and computational study of microscopic interfacial and mechanical properties, we demontrate that the degradation of NCM-LPSCl originates primarily from the formation of resistive interphases, while the crucial degradation factor of NCM-LIC is the cracking-induced mechanical deformation of the LIC under pressure. Finite element analysis results further reveal how the deformation behavior of the SE materials influences the formation and propagation of cracks in composite cathodes during cycling. This study provides insights into the design of materials and electrodes for ASSBs with high power capabilities and long cycle lifetimes.
科研通智能强力驱动
Strongly Powered by AbleSci AI