A gene regulatory network inference model based on pseudo-siamese network

基因调控网络 推论 DNA微阵列 计算生物学 计算机科学 基因 生物 遗传学 人工智能 基因表达
作者
Qian Wang,Maozu Guo,Jian Chen,Ran Duan
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:24 (1) 被引量:2
标识
DOI:10.1186/s12859-023-05253-9
摘要

Gene regulatory networks (GRNs) arise from the intricate interactions between transcription factors (TFs) and their target genes during the growth and development of organisms. The inference of GRNs can unveil the underlying gene interactions in living systems and facilitate the investigation of the relationship between gene expression patterns and phenotypic traits. Although several machine-learning models have been proposed for inferring GRNs from single-cell RNA sequencing (scRNA-seq) data, some of these models, such as Boolean and tree-based networks, suffer from sensitivity to noise and may encounter difficulties in handling the high noise and dimensionality of actual scRNA-seq data, as well as the sparse nature of gene regulation relationships. Thus, inferring large-scale information from GRNs remains a formidable challenge.This study proposes a multilevel, multi-structure framework called a pseudo-Siamese GRN (PSGRN) for inferring large-scale GRNs from time-series expression datasets. Based on the pseudo-Siamese network, we applied a gated recurrent unit to capture the time features of each TF and target matrix and learn the spatial features of the matrices after merging by applying the DenseNet framework. Finally, we applied a sigmoid function to evaluate interactions. We constructed two maize sub-datasets, including gene expression levels and GRNs, using existing open-source maize multi-omics data and compared them to other GRN inference methods, including GENIE3, GRNBoost2, nonlinear ordinary differential equations, CNNC, and DGRNS. Our results show that PSGRN outperforms state-of-the-art methods. This study proposed a new framework: a PSGRN that allows GRNs to be inferred from scRNA-seq data, elucidating the temporal and spatial features of TFs and their target genes. The results show the model's robustness and generalization, laying a theoretical foundation for maize genotype-phenotype associations with implications for breeding work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smile完成签到,获得积分10
4秒前
sy发布了新的文献求助10
5秒前
重重重飞完成签到 ,获得积分10
9秒前
zhangjianzeng完成签到 ,获得积分10
12秒前
呆萌的小海豚完成签到,获得积分10
12秒前
看见了紫荆花完成签到 ,获得积分10
15秒前
顾矜应助wang5945采纳,获得10
15秒前
sy完成签到,获得积分10
22秒前
30秒前
符怜雪发布了新的文献求助10
34秒前
weng完成签到,获得积分10
35秒前
zhangshan关注了科研通微信公众号
35秒前
35秒前
gg完成签到,获得积分10
36秒前
刘敏完成签到 ,获得积分10
40秒前
符怜雪完成签到,获得积分10
44秒前
木木杉完成签到 ,获得积分10
50秒前
正直无极完成签到 ,获得积分10
51秒前
songnvshi完成签到 ,获得积分10
54秒前
摘星012完成签到 ,获得积分10
55秒前
沉默的婴完成签到 ,获得积分10
57秒前
18062677029完成签到 ,获得积分10
57秒前
妮子拉完成签到,获得积分10
59秒前
大象7199完成签到,获得积分10
1分钟前
端庄代荷完成签到 ,获得积分10
1分钟前
弧光完成签到 ,获得积分10
1分钟前
i2stay完成签到,获得积分10
1分钟前
ZZ完成签到,获得积分10
1分钟前
大轩完成签到 ,获得积分10
1分钟前
等你下课完成签到 ,获得积分10
1分钟前
xin完成签到,获得积分20
1分钟前
净禅完成签到 ,获得积分10
1分钟前
墨墨完成签到 ,获得积分10
1分钟前
春天的粥完成签到 ,获得积分10
1分钟前
危机的慕卉完成签到 ,获得积分10
1分钟前
mike2012完成签到 ,获得积分10
1分钟前
昱昱完成签到 ,获得积分10
1分钟前
amanda完成签到 ,获得积分10
1分钟前
聪慧语山完成签到 ,获得积分10
1分钟前
无辜的蜗牛完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294696
求助须知:如何正确求助?哪些是违规求助? 2930565
关于积分的说明 8446310
捐赠科研通 2602872
什么是DOI,文献DOI怎么找? 1420777
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643461