A gene regulatory network inference model based on pseudo-siamese network

基因调控网络 推论 DNA微阵列 计算生物学 计算机科学 基因 生物 遗传学 人工智能 基因表达
作者
Qian Wang,Maozu Guo,Jian Chen,Ran Duan
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:24 (1) 被引量:2
标识
DOI:10.1186/s12859-023-05253-9
摘要

Gene regulatory networks (GRNs) arise from the intricate interactions between transcription factors (TFs) and their target genes during the growth and development of organisms. The inference of GRNs can unveil the underlying gene interactions in living systems and facilitate the investigation of the relationship between gene expression patterns and phenotypic traits. Although several machine-learning models have been proposed for inferring GRNs from single-cell RNA sequencing (scRNA-seq) data, some of these models, such as Boolean and tree-based networks, suffer from sensitivity to noise and may encounter difficulties in handling the high noise and dimensionality of actual scRNA-seq data, as well as the sparse nature of gene regulation relationships. Thus, inferring large-scale information from GRNs remains a formidable challenge.This study proposes a multilevel, multi-structure framework called a pseudo-Siamese GRN (PSGRN) for inferring large-scale GRNs from time-series expression datasets. Based on the pseudo-Siamese network, we applied a gated recurrent unit to capture the time features of each TF and target matrix and learn the spatial features of the matrices after merging by applying the DenseNet framework. Finally, we applied a sigmoid function to evaluate interactions. We constructed two maize sub-datasets, including gene expression levels and GRNs, using existing open-source maize multi-omics data and compared them to other GRN inference methods, including GENIE3, GRNBoost2, nonlinear ordinary differential equations, CNNC, and DGRNS. Our results show that PSGRN outperforms state-of-the-art methods. This study proposed a new framework: a PSGRN that allows GRNs to be inferred from scRNA-seq data, elucidating the temporal and spatial features of TFs and their target genes. The results show the model's robustness and generalization, laying a theoretical foundation for maize genotype-phenotype associations with implications for breeding work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wqwq69完成签到,获得积分10
刚刚
铝离子发布了新的文献求助10
1秒前
大个应助科研通管家采纳,获得10
2秒前
ZHY完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
毛毛弟发布了新的文献求助10
3秒前
3秒前
若水完成签到 ,获得积分10
4秒前
14999发布了新的文献求助10
4秒前
Tina完成签到,获得积分10
4秒前
SMULJL完成签到 ,获得积分10
5秒前
5秒前
大气石头完成签到,获得积分10
5秒前
6秒前
狂野忆文发布了新的文献求助10
6秒前
lingo完成签到 ,获得积分10
7秒前
7秒前
yellow完成签到 ,获得积分10
7秒前
8秒前
tomato的痛苦你不知道完成签到,获得积分10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
you完成签到,获得积分10
9秒前
陳.发布了新的文献求助10
9秒前
Lc完成签到,获得积分10
9秒前
堀江真夏完成签到 ,获得积分10
10秒前
浅池星完成签到 ,获得积分10
10秒前
铝离子完成签到,获得积分10
10秒前
李明涵完成签到 ,获得积分10
10秒前
MchemG应助机智的一笑采纳,获得10
11秒前
月亮上的猫完成签到,获得积分10
11秒前
如初完成签到,获得积分10
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027