Automated Medical Diagnosis of Alzheimer´s Disease Using an Efficient Net Convolutional Neural Network

卷积神经网络 人工智能 神经影像学 认知障碍 深度学习 计算机科学 学习迁移 模式识别(心理学) 机器学习 医学 疾病 病理 精神科
作者
Deevyankar Agarwal,M. Álvaro Berbís,Antonio Luna,Vivian Lipari,Julien Brito Ballester,Isabel Torre-Díez
出处
期刊:Journal of Medical Systems [Springer Nature]
卷期号:47 (1)
标识
DOI:10.1007/s10916-023-01941-4
摘要

Alzheimer's disease (AD) poses an enormous challenge to modern healthcare. Since 2017, researchers have been using deep learning (DL) models for the early detection of AD using neuroimaging biomarkers. In this paper, we implement the EfficietNet-b0 convolutional neural network (CNN) with a novel approach-"fusion of end-to-end and transfer learning"-to classify different stages of AD. 245 T1W MRI scans of cognitively normal (CN) subjects, 229 scans of AD subjects, and 229 scans of subjects with stable mild cognitive impairment (sMCI) were employed. Each scan was preprocessed using a standard pipeline. The proposed models were trained and evaluated using preprocessed scans. For the sMCI vs. AD classification task we obtained 95.29% accuracy and 95.35% area under the curve (AUC) for model training and 93.10% accuracy and 93.00% AUC for model testing. For the multiclass AD vs. CN vs. sMCI classification task we obtained 85.66% accuracy and 86% AUC for model training and 87.38% accuracy and 88.00% AUC for model testing. Based on our experimental results, we conclude that CNN-based DL models can be used to analyze complicated MRI scan features in clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心青旋发布了新的文献求助10
刚刚
1秒前
安详以晴完成签到,获得积分20
1秒前
Ava应助我儿长柏必定高中采纳,获得10
1秒前
1秒前
jiji完成签到,获得积分10
1秒前
田様应助周五采纳,获得10
2秒前
贪玩念寒发布了新的文献求助10
2秒前
2秒前
Mike发布了新的文献求助20
2秒前
kukude完成签到,获得积分10
3秒前
jianguo完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
shhoing应助科研通管家采纳,获得10
3秒前
nPgA2o应助科研通管家采纳,获得10
3秒前
star应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
万能图书馆应助第七班采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
南敏株发布了新的文献求助10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
louziqi发布了新的文献求助10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
cfmanman完成签到,获得积分10
4秒前
4秒前
汉堡包应助椰子采纳,获得10
5秒前
科研通AI6应助利多卡因采纳,获得10
5秒前
共享精神应助南庭采纳,获得10
5秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656