亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Medical Diagnosis of Alzheimer´s Disease Using an Efficient Net Convolutional Neural Network

卷积神经网络 人工智能 神经影像学 认知障碍 深度学习 计算机科学 学习迁移 模式识别(心理学) 机器学习 医学 疾病 病理 精神科
作者
Deevyankar Agarwal,M. Álvaro Berbís,Antonio Luna,Vivian Lipari,Julien Brito Ballester,Isabel Torre-Díez
出处
期刊:Journal of Medical Systems [Springer Science+Business Media]
卷期号:47 (1)
标识
DOI:10.1007/s10916-023-01941-4
摘要

Alzheimer's disease (AD) poses an enormous challenge to modern healthcare. Since 2017, researchers have been using deep learning (DL) models for the early detection of AD using neuroimaging biomarkers. In this paper, we implement the EfficietNet-b0 convolutional neural network (CNN) with a novel approach-"fusion of end-to-end and transfer learning"-to classify different stages of AD. 245 T1W MRI scans of cognitively normal (CN) subjects, 229 scans of AD subjects, and 229 scans of subjects with stable mild cognitive impairment (sMCI) were employed. Each scan was preprocessed using a standard pipeline. The proposed models were trained and evaluated using preprocessed scans. For the sMCI vs. AD classification task we obtained 95.29% accuracy and 95.35% area under the curve (AUC) for model training and 93.10% accuracy and 93.00% AUC for model testing. For the multiclass AD vs. CN vs. sMCI classification task we obtained 85.66% accuracy and 86% AUC for model training and 87.38% accuracy and 88.00% AUC for model testing. Based on our experimental results, we conclude that CNN-based DL models can be used to analyze complicated MRI scan features in clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
jyy发布了新的文献求助10
18秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
29秒前
Shuo应助科研通管家采纳,获得20
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
51秒前
文艺易蓉发布了新的文献求助10
54秒前
小蘑菇应助文艺易蓉采纳,获得10
1分钟前
调皮醉波完成签到 ,获得积分10
1分钟前
1分钟前
XiaoLiu完成签到,获得积分10
1分钟前
1分钟前
Dreamer.发布了新的文献求助10
2分钟前
充电宝应助Xinying采纳,获得10
2分钟前
2分钟前
Hvginn完成签到,获得积分10
2分钟前
2分钟前
sc发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Shuo应助科研通管家采纳,获得20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Shuo应助科研通管家采纳,获得20
2分钟前
zwang688完成签到,获得积分10
2分钟前
负责的书兰完成签到 ,获得积分20
2分钟前
Ava应助jyy采纳,获得10
2分钟前
2分钟前
2分钟前
ygl0217发布了新的文献求助10
2分钟前
3分钟前
ygl0217完成签到,获得积分10
3分钟前
null应助星沐易采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
jyy发布了新的文献求助10
4分钟前
Shuo应助科研通管家采纳,获得20
4分钟前
sc发布了新的文献求助10
4分钟前
Lucas应助sc采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595916
求助须知:如何正确求助?哪些是违规求助? 4008099
关于积分的说明 12408842
捐赠科研通 3686911
什么是DOI,文献DOI怎么找? 2032113
邀请新用户注册赠送积分活动 1065358
科研通“疑难数据库(出版商)”最低求助积分说明 950695