Rapid and high-resolution visualization elements analysis of material surface based on laser-induced breakdown spectroscopy and hyperspectral imaging

高光谱成像 激光诱导击穿光谱 主成分分析 元素分析 光谱学 可视化 成像光谱学 图像分辨率 材料科学 激光器 激光烧蚀 分辨率(逻辑) 激光扫描 光学 化学 计算机科学 物理 人工智能 有机化学 量子力学
作者
Shangyong Zhao,Yuchen Zhao,Zongyu Hou,Zhe Wang
出处
期刊:Applied Surface Science [Elsevier]
卷期号:629: 157415-157415 被引量:8
标识
DOI:10.1016/j.apsusc.2023.157415
摘要

It is extremely important for material analysis to visualize the elemental distribution of the sample surface quickly, sensibly, and high-resolution. Most point-to-point methods, such as laser-induced breakdown spectroscopy (LIBS), are incapable of achieving high spatial resolution at a reasonable time cost, while surface scanning methods such as hyperspectral imaging (HSI) is insensitive to concentration and material composition. In this work, we proposed a method coupling LIBS with HSI for rapid and high-resolution elemental distribution analysis of material surface. The method of point-to-point laser ablation and region of interest (ROI) segmentation were primarily employed. We further processed the LIBS and HSI spectra and distinguished different ROIs of material surface using principal component analysis. Significant LIBS and HSI lines that contributed to the classification of ROIs were also identified. Moreover, we examined the relationship between the principal component scores of LIBS and HSI spectra based on the Spearman correlation coefficient. Finally, the element visualization images of LIBS and LIBS-HSI were presented and compared. Compared with LIBS imaging, LIBS-HSI imaging offers a better spatial resolution that is at least 90.75 folds higher and a scanning time that is at least 6 times shorter. These results, together with the experimental process, indicate that LIBS-HSI appears to be a promising contender for rapid and high-resolution visual element analysis of material surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wang发布了新的文献求助200
1秒前
1秒前
1秒前
英姑应助snowdrift采纳,获得10
1秒前
1秒前
1秒前
jy完成签到 ,获得积分10
1秒前
NexusExplorer应助立马毕业采纳,获得10
2秒前
在水一方应助123采纳,获得10
3秒前
科目三应助白华苍松采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
CipherSage应助千幻采纳,获得10
4秒前
4秒前
dddddd完成签到,获得积分10
4秒前
桂魄发布了新的文献求助10
4秒前
年轻的咖啡豆完成签到,获得积分20
5秒前
5秒前
绿洲发布了新的文献求助10
5秒前
5秒前
6秒前
aDou完成签到 ,获得积分10
6秒前
脑洞疼应助bc采纳,获得10
6秒前
NEMO发布了新的文献求助10
6秒前
李健应助mammoth采纳,获得20
6秒前
熊boy发布了新的文献求助10
6秒前
天真思雁发布了新的文献求助10
6秒前
7秒前
情怀应助蔡蔡不菜菜采纳,获得10
7秒前
shouyu29应助MADKAI采纳,获得10
8秒前
CipherSage应助MADKAI采纳,获得10
8秒前
乐乐应助MADKAI采纳,获得10
8秒前
ChangSZ应助MADKAI采纳,获得10
8秒前
乐乐应助MADKAI采纳,获得10
8秒前
小飞七应助MADKAI采纳,获得10
8秒前
Akim应助MADKAI采纳,获得20
8秒前
科研通AI5应助MADKAI采纳,获得10
8秒前
充电宝应助MADKAI采纳,获得10
8秒前
buno应助MADKAI采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762