Detection of moisture content in logs using multi-parameter GPR signal analysis and neural network models

主成分分析 人工神经网络 Lasso(编程语言) 探地雷达 生物系统 含水量 模式识别(心理学) 反向传播 收缩率 雷达 残余物 近似误差 人工智能 数学 计算机科学 土壤科学 算法 统计 环境科学 工程类 岩土工程 电信 生物 万维网
作者
Jiaxing Guo,Peng Wang,Ruixia Qin,Liming Zhao,Xu Tang,Jianyong Zeng,Huadong Xu
出处
期刊:Holzforschung [De Gruyter]
卷期号:77 (4): 240-247 被引量:1
标识
DOI:10.1515/hf-2022-0161
摘要

Abstract To address the low accuracy of non-destructive detection of moisture content (MC) of logs (especially in small diameters) by ground penetrating radar (GPR) signals, the MC of 10–15 cm diameter spruce, Manchurian ash, and white birch logs were predicted using the time-frequency parameters of the GPR signals and a back-propagation neural network (BPNN) model. B-scan signals were obtained using tree radar on the barks of discs selected from fresh green logs. Then, 31 time-frequency parameters from the B-scan signals were optimised using the least absolute shrinkage and selection operator (Lasso) and principal component analysis (PCA). Finally, the log MCs of the single and hybrid models was predicted using the BPNN. The accuracy of the least absolute shrinkage and selection operator and back-propagation neural network (Lasso-BP) were higher than those of the principal component analysis and back-propagation neural network (PCA-BP), and the BPNN. The individual species and hybrid models both have good predictive capability; when the log MC is below 20%, the maximum residual errors are relatively small, almost within 6% and 10%, respectively. These models significantly improve the accuracy of non-destructive detection of log MC and are beneficial for efficient wood processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风不竞发布了新的文献求助10
刚刚
JamesPei应助可可豆战士采纳,获得10
1秒前
浮游应助芝士采纳,获得10
1秒前
jiunuan应助芝士采纳,获得10
1秒前
顾矜应助芝士采纳,获得10
1秒前
香蕉觅云应助wzg666采纳,获得10
1秒前
3秒前
脑洞疼应助77qoq采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
wwwwc发布了新的文献求助10
3秒前
xuqiansd发布了新的文献求助10
4秒前
科研通AI6应助棉花糖采纳,获得10
4秒前
5秒前
奇异果发布了新的文献求助10
6秒前
无限符号发布了新的文献求助10
6秒前
Mtoc发布了新的文献求助10
8秒前
8秒前
8秒前
jinze完成签到,获得积分10
8秒前
9秒前
9秒前
菠萝Vicky完成签到,获得积分10
10秒前
黑马王子发布了新的文献求助10
10秒前
10秒前
11秒前
星辰大海应助无心的闭月采纳,获得10
11秒前
艾莉完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
racill发布了新的文献求助10
13秒前
敏敏发布了新的文献求助10
14秒前
菠萝Vicky发布了新的文献求助10
14秒前
14秒前
迷路尔容完成签到,获得积分10
15秒前
wzg666发布了新的文献求助10
15秒前
科研通AI6应助黑马王子采纳,获得10
16秒前
渊_发布了新的文献求助10
16秒前
16秒前
要开心吖完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937