亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of moisture content in logs using multi-parameter GPR signal analysis and neural network models

主成分分析 人工神经网络 Lasso(编程语言) 探地雷达 生物系统 含水量 模式识别(心理学) 反向传播 收缩率 雷达 残余物 近似误差 人工智能 数学 计算机科学 土壤科学 算法 统计 环境科学 工程类 岩土工程 电信 生物 万维网
作者
Jiaxing Guo,Peng Wang,Ruixia Qin,Liming Zhao,Xu Tang,Jianyong Zeng,Huadong Xu
出处
期刊:Holzforschung [De Gruyter]
卷期号:77 (4): 240-247 被引量:1
标识
DOI:10.1515/hf-2022-0161
摘要

Abstract To address the low accuracy of non-destructive detection of moisture content (MC) of logs (especially in small diameters) by ground penetrating radar (GPR) signals, the MC of 10–15 cm diameter spruce, Manchurian ash, and white birch logs were predicted using the time-frequency parameters of the GPR signals and a back-propagation neural network (BPNN) model. B-scan signals were obtained using tree radar on the barks of discs selected from fresh green logs. Then, 31 time-frequency parameters from the B-scan signals were optimised using the least absolute shrinkage and selection operator (Lasso) and principal component analysis (PCA). Finally, the log MCs of the single and hybrid models was predicted using the BPNN. The accuracy of the least absolute shrinkage and selection operator and back-propagation neural network (Lasso-BP) were higher than those of the principal component analysis and back-propagation neural network (PCA-BP), and the BPNN. The individual species and hybrid models both have good predictive capability; when the log MC is below 20%, the maximum residual errors are relatively small, almost within 6% and 10%, respectively. These models significantly improve the accuracy of non-destructive detection of log MC and are beneficial for efficient wood processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wuzhh发布了新的文献求助10
6秒前
13秒前
zoye完成签到 ,获得积分10
15秒前
16秒前
残月初升发布了新的文献求助10
16秒前
乙予安完成签到,获得积分10
18秒前
wuzhh完成签到,获得积分10
20秒前
Criminology34应助乙予安采纳,获得10
22秒前
ttzziy完成签到 ,获得积分10
23秒前
池雨完成签到 ,获得积分10
33秒前
33秒前
无花果应助GGBoy采纳,获得10
37秒前
Aalph发布了新的文献求助10
39秒前
43秒前
薄雪草完成签到,获得积分10
45秒前
汤姆完成签到,获得积分10
45秒前
沈以菱发布了新的文献求助10
45秒前
47秒前
ZJ完成签到,获得积分10
49秒前
残月初升完成签到,获得积分10
51秒前
1分钟前
迷路的沛芹完成签到 ,获得积分10
1分钟前
jiaxiangxia完成签到 ,获得积分10
1分钟前
Meyako完成签到 ,获得积分0
1分钟前
梅思寒完成签到 ,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
1分钟前
Owen应助吼吼哈嘿采纳,获得10
1分钟前
Lucky完成签到,获得积分10
1分钟前
张宁完成签到,获得积分10
1分钟前
1分钟前
GGBoy发布了新的文献求助10
1分钟前
后山种仙草完成签到,获得积分10
1分钟前
hahahan完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301819
求助须知:如何正确求助?哪些是违规求助? 4449255
关于积分的说明 13848057
捐赠科研通 4335344
什么是DOI,文献DOI怎么找? 2380256
邀请新用户注册赠送积分活动 1375227
关于科研通互助平台的介绍 1341303