Adoption Case of IIoT and Machine Learning to Improve Energy Consumption at a Process Manufacturing Firm, under Industry 5.0 Model

计算机科学 过程(计算) 持续性 能源消耗 高效能源利用 商业模式 过程管理 工业工程 风险分析(工程) 工程类 业务 营销 生态学 生物 操作系统 电气工程
作者
Andrés Redchuk,Federico Walas Mateo,Guadalupe Pascal,Julián Tornillo
出处
期刊:Big data and cognitive computing [Multidisciplinary Digital Publishing Institute]
卷期号:7 (1): 42-42 被引量:12
标识
DOI:10.3390/bdcc7010042
摘要

Considering the novel concept of Industry 5.0 model, where sustainability is aimed together with integration in the value chain and centrality of people in the production environment, this article focuses on a case where energy efficiency is achieved. The work presents a food industry case where a low-code AI platform was adopted to improve the efficiency and lower environmental footprint impact of its operations. The paper describes the adoption process of the solution integrated with an IIoT architecture that generates data to achieve process optimization. The case shows how a low-code AI platform can ease energy efficiency, considering people in the process, empowering them, and giving a central role in the improvement opportunity. The paper includes a conceptual framework on issues related to Industry 5.0 model, the food industry, IIoT, and machine learning. The adoption case’s relevancy is marked by how the business model looks to democratize artificial intelligence in industrial firms. The proposed model delivers value to ease traditional industries to obtain better operational results and contribute to a better use of resources. Finally, the work intends to go through opportunities that arise around artificial intelligence as a driver for new business and operating models considering the role of people in the process. By empowering industrial engineers with data driven solutions, organizations can ensure that their domain expertise can be applied to data insights to achieve better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助萍子采纳,获得10
刚刚
leo发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
木湾发布了新的文献求助10
2秒前
2秒前
黑桃3发布了新的文献求助10
2秒前
3秒前
4秒前
坚强嚣完成签到,获得积分20
6秒前
fuws发布了新的文献求助10
6秒前
7秒前
7秒前
水清木华完成签到,获得积分10
8秒前
天天快乐应助大力的忆霜采纳,获得10
9秒前
要笑发布了新的文献求助10
11秒前
bailulu发布了新的文献求助10
12秒前
pan发布了新的文献求助10
12秒前
大模型应助冰柠檬采纳,获得10
13秒前
SciGPT应助蛰伏的小宇宙采纳,获得10
14秒前
syj完成签到,获得积分10
15秒前
15秒前
Doct发布了新的文献求助10
17秒前
18秒前
19秒前
天天完成签到,获得积分10
20秒前
要笑完成签到,获得积分10
20秒前
小猫多鱼完成签到,获得积分10
20秒前
20秒前
小馒完成签到 ,获得积分10
21秒前
Su73发布了新的文献求助10
21秒前
22秒前
ChuanjiWu完成签到,获得积分10
22秒前
YANA完成签到,获得积分10
23秒前
24秒前
Liu发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980027
求助须知:如何正确求助?哪些是违规求助? 3524131
关于积分的说明 11219994
捐赠科研通 3261576
什么是DOI,文献DOI怎么找? 1800726
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232