Adoption Case of IIoT and Machine Learning to Improve Energy Consumption at a Process Manufacturing Firm, under Industry 5.0 Model

计算机科学 过程(计算) 持续性 能源消耗 高效能源利用 商业模式 过程管理 工业工程 风险分析(工程) 工程类 业务 营销 生态学 生物 操作系统 电气工程
作者
Andrés Redchuk,Federico Walas Mateo,Guadalupe Pascal,Julián Tornillo
出处
期刊:Big data and cognitive computing [Multidisciplinary Digital Publishing Institute]
卷期号:7 (1): 42-42 被引量:12
标识
DOI:10.3390/bdcc7010042
摘要

Considering the novel concept of Industry 5.0 model, where sustainability is aimed together with integration in the value chain and centrality of people in the production environment, this article focuses on a case where energy efficiency is achieved. The work presents a food industry case where a low-code AI platform was adopted to improve the efficiency and lower environmental footprint impact of its operations. The paper describes the adoption process of the solution integrated with an IIoT architecture that generates data to achieve process optimization. The case shows how a low-code AI platform can ease energy efficiency, considering people in the process, empowering them, and giving a central role in the improvement opportunity. The paper includes a conceptual framework on issues related to Industry 5.0 model, the food industry, IIoT, and machine learning. The adoption case’s relevancy is marked by how the business model looks to democratize artificial intelligence in industrial firms. The proposed model delivers value to ease traditional industries to obtain better operational results and contribute to a better use of resources. Finally, the work intends to go through opportunities that arise around artificial intelligence as a driver for new business and operating models considering the role of people in the process. By empowering industrial engineers with data driven solutions, organizations can ensure that their domain expertise can be applied to data insights to achieve better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
风扇没有电完成签到,获得积分10
4秒前
甜羊羊发布了新的文献求助10
5秒前
sxmt123456789发布了新的文献求助30
5秒前
5秒前
ceeray23发布了新的文献求助20
5秒前
田様应助临澈采纳,获得10
6秒前
ZQP发布了新的文献求助10
6秒前
大个应助愉快的语山采纳,获得10
9秒前
ZQP完成签到,获得积分10
11秒前
xyhua925完成签到,获得积分10
11秒前
11秒前
功不唐捐完成签到,获得积分10
11秒前
caoyuya123完成签到 ,获得积分10
11秒前
iehaoang完成签到 ,获得积分10
13秒前
领导范儿应助Mn采纳,获得10
13秒前
14秒前
14秒前
小陈呀完成签到 ,获得积分10
15秒前
15秒前
桐桐应助清脆的夜白采纳,获得10
17秒前
CodeCraft应助无隅采纳,获得10
19秒前
xixilulixiu完成签到 ,获得积分10
20秒前
20秒前
木子木子李完成签到,获得积分10
23秒前
丘比特应助小江不饿采纳,获得10
24秒前
changping应助jackten采纳,获得10
25秒前
ep_bhw发布了新的文献求助10
26秒前
FashionBoy应助胡兴采纳,获得10
27秒前
yyzhou应助Doc采纳,获得10
28秒前
32秒前
尊敬若云完成签到 ,获得积分10
33秒前
34秒前
Jasper应助科研通管家采纳,获得20
35秒前
Hello应助科研通管家采纳,获得10
35秒前
田様应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208823
求助须知:如何正确求助?哪些是违规求助? 4386109
关于积分的说明 13660182
捐赠科研通 4245203
什么是DOI,文献DOI怎么找? 2329161
邀请新用户注册赠送积分活动 1326969
关于科研通互助平台的介绍 1279265