A Bayesian Network Approach to Social and Nonsocial Cognition in Schizophrenia: Are Some Domains More Fundamental than Others?

心理学 社会认知 认知 认知心理学 精神分裂症(面向对象编程) 情感(语言学) 工作记忆 视觉处理 发展心理学 感知 沟通 神经科学 精神科
作者
Samuel J. Abplanalp,Junghee Lee,William P. Horan,Robert S. Kern,David L. Penn,Michael F. Green
出处
期刊:Schizophrenia Bulletin [Oxford University Press]
卷期号:49 (4): 997-1006 被引量:10
标识
DOI:10.1093/schbul/sbad012
摘要

Abstract Objectives Social and nonsocial cognition are defined as distinct yet related constructs. However, the relative independence of individual variables—and whether specific tasks directly depend on performance in other tasks—is still unclear. The current study aimed to answer this question by using a Bayesian network approach to explore directional dependencies among social and nonsocial cognitive domains. Study Design The study sample comprised 173 participants with schizophrenia (71.7% male; 28.3% female). Participants completed 5 social cognitive tasks and the MATRICS Consensus Cognitive Battery. We estimated Bayesian networks using directed acyclic graph structures to examine directional dependencies among the variables. Study Results After accounting for negative symptoms and demographic variables, including age and sex, all nonsocial cognitive variables depended on processing speed. More specifically, attention, verbal memory, and reasoning and problem solving solely depended on processing speed, while a causal chain emerged between processing speed and visual memory (processing speed → attention → working memory → visual memory). Social processing variables within social cognition, including emotion in biological motion and empathic accuracy, depended on facial affect identification. Conclusions These results suggest that processing speed and facial affect identification are fundamental domains of nonsocial and social cognition, respectively. We outline how these findings could potentially help guide specific interventions that aim to improve social and nonsocial cognition in people with schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的博涛给懦弱的博涛的求助进行了留言
1秒前
酷波er应助xiao采纳,获得10
1秒前
精明板栗完成签到,获得积分10
2秒前
蒋鹏煊完成签到,获得积分10
3秒前
4秒前
5秒前
CodeCraft应助Painkiller_采纳,获得10
9秒前
Hua完成签到,获得积分10
10秒前
ppp完成签到,获得积分10
10秒前
11秒前
13秒前
英勇的严青完成签到,获得积分10
13秒前
14秒前
云止完成签到 ,获得积分10
16秒前
研友_Zb1rln发布了新的文献求助10
17秒前
可可西里发布了新的文献求助80
19秒前
fanxiangli完成签到,获得积分20
20秒前
23秒前
隐形曼青应助Painkiller_采纳,获得10
24秒前
肥猫完成签到,获得积分10
26秒前
27秒前
此时此刻完成签到,获得积分10
28秒前
mary完成签到,获得积分10
29秒前
情怀应助凯撒采纳,获得10
30秒前
小蘑菇应助6and1采纳,获得30
31秒前
不二完成签到 ,获得积分10
32秒前
32秒前
小曾完成签到,获得积分10
33秒前
研友_VZG7GZ应助归海亦云采纳,获得10
34秒前
34秒前
34秒前
6666发布了新的文献求助10
37秒前
龙龙冲完成签到,获得积分20
37秒前
37秒前
38秒前
mary发布了新的文献求助10
39秒前
活力惜海发布了新的文献求助10
41秒前
凯撒发布了新的文献求助10
42秒前
44秒前
英俊的铭应助Painkiller_采纳,获得10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400