A Bayesian Network Approach to Social and Nonsocial Cognition in Schizophrenia: Are Some Domains More Fundamental than Others?

心理学 社会认知 认知 认知心理学 精神分裂症(面向对象编程) 情感(语言学) 工作记忆 视觉处理 发展心理学 感知 沟通 神经科学 精神科
作者
Samuel J. Abplanalp,Junghee Lee,William P. Horan,Robert S. Kern,David L. Penn,Michael F. Green
出处
期刊:Schizophrenia Bulletin [Oxford University Press]
卷期号:49 (4): 997-1006 被引量:10
标识
DOI:10.1093/schbul/sbad012
摘要

Abstract Objectives Social and nonsocial cognition are defined as distinct yet related constructs. However, the relative independence of individual variables—and whether specific tasks directly depend on performance in other tasks—is still unclear. The current study aimed to answer this question by using a Bayesian network approach to explore directional dependencies among social and nonsocial cognitive domains. Study Design The study sample comprised 173 participants with schizophrenia (71.7% male; 28.3% female). Participants completed 5 social cognitive tasks and the MATRICS Consensus Cognitive Battery. We estimated Bayesian networks using directed acyclic graph structures to examine directional dependencies among the variables. Study Results After accounting for negative symptoms and demographic variables, including age and sex, all nonsocial cognitive variables depended on processing speed. More specifically, attention, verbal memory, and reasoning and problem solving solely depended on processing speed, while a causal chain emerged between processing speed and visual memory (processing speed → attention → working memory → visual memory). Social processing variables within social cognition, including emotion in biological motion and empathic accuracy, depended on facial affect identification. Conclusions These results suggest that processing speed and facial affect identification are fundamental domains of nonsocial and social cognition, respectively. We outline how these findings could potentially help guide specific interventions that aim to improve social and nonsocial cognition in people with schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助icey采纳,获得10
刚刚
刚刚
刚刚
qiuyu完成签到,获得积分10
刚刚
浮游应助周伟杰采纳,获得10
1秒前
1秒前
DONG发布了新的文献求助10
1秒前
palace完成签到 ,获得积分10
2秒前
ZIVON完成签到,获得积分10
3秒前
今后应助李y梅子采纳,获得10
3秒前
大吉完成签到,获得积分10
3秒前
hangongyishan完成签到,获得积分10
3秒前
shuangyanli完成签到,获得积分10
3秒前
3秒前
坦率白容完成签到,获得积分10
4秒前
勤劳樱发布了新的文献求助10
5秒前
尖尖发布了新的文献求助10
5秒前
6秒前
6秒前
026关闭了026文献求助
7秒前
7秒前
坦率白容发布了新的文献求助10
7秒前
7秒前
august驳回了ding应助
8秒前
8秒前
9秒前
淡然可冥发布了新的文献求助10
9秒前
10秒前
10秒前
gxcfdc完成签到,获得积分10
11秒前
11秒前
周伟杰完成签到,获得积分10
11秒前
widomwang发布了新的文献求助10
11秒前
丘奇发布了新的文献求助10
12秒前
小蚂蚁发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424345
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163720
捐赠科研通 4455670
什么是DOI,文献DOI怎么找? 2443852
邀请新用户注册赠送积分活动 1434997
关于科研通互助平台的介绍 1412337