已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Bayesian Network Approach to Social and Nonsocial Cognition in Schizophrenia: Are Some Domains More Fundamental than Others?

心理学 社会认知 认知 认知心理学 精神分裂症(面向对象编程) 情感(语言学) 工作记忆 视觉处理 发展心理学 感知 沟通 神经科学 精神科
作者
Samuel J. Abplanalp,Junghee Lee,William P. Horan,Robert S. Kern,David L. Penn,Michael F. Green
出处
期刊:Schizophrenia Bulletin [Oxford University Press]
卷期号:49 (4): 997-1006 被引量:10
标识
DOI:10.1093/schbul/sbad012
摘要

Abstract Objectives Social and nonsocial cognition are defined as distinct yet related constructs. However, the relative independence of individual variables—and whether specific tasks directly depend on performance in other tasks—is still unclear. The current study aimed to answer this question by using a Bayesian network approach to explore directional dependencies among social and nonsocial cognitive domains. Study Design The study sample comprised 173 participants with schizophrenia (71.7% male; 28.3% female). Participants completed 5 social cognitive tasks and the MATRICS Consensus Cognitive Battery. We estimated Bayesian networks using directed acyclic graph structures to examine directional dependencies among the variables. Study Results After accounting for negative symptoms and demographic variables, including age and sex, all nonsocial cognitive variables depended on processing speed. More specifically, attention, verbal memory, and reasoning and problem solving solely depended on processing speed, while a causal chain emerged between processing speed and visual memory (processing speed → attention → working memory → visual memory). Social processing variables within social cognition, including emotion in biological motion and empathic accuracy, depended on facial affect identification. Conclusions These results suggest that processing speed and facial affect identification are fundamental domains of nonsocial and social cognition, respectively. We outline how these findings could potentially help guide specific interventions that aim to improve social and nonsocial cognition in people with schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Margaret完成签到 ,获得积分10
2秒前
舒萼完成签到,获得积分10
2秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
6秒前
吾月发布了新的文献求助10
6秒前
FashionBoy应助白玫瑰采纳,获得10
8秒前
myheng完成签到 ,获得积分10
9秒前
lanxinyue完成签到,获得积分0
10秒前
搜集达人应助轻舟采纳,获得10
11秒前
11秒前
max发布了新的文献求助10
12秒前
郭娅楠发布了新的文献求助10
16秒前
七熵完成签到 ,获得积分0
19秒前
邵邵关注了科研通微信公众号
22秒前
小二郎应助leolee采纳,获得10
29秒前
李健的小迷弟应助vv采纳,获得10
35秒前
35秒前
leolee完成签到,获得积分10
36秒前
39秒前
科研通AI2S应助Amy采纳,获得10
41秒前
汉堡包应助科研通管家采纳,获得10
41秒前
柯一一应助科研通管家采纳,获得10
41秒前
41秒前
邵邵发布了新的文献求助10
42秒前
ww完成签到 ,获得积分10
43秒前
ekko发布了新的文献求助10
44秒前
哈哈完成签到,获得积分10
45秒前
leolee发布了新的文献求助10
46秒前
LJQ发布了新的文献求助10
48秒前
53秒前
秋刀鱼不过期完成签到 ,获得积分10
57秒前
57秒前
58秒前
1分钟前
轻舟发布了新的文献求助10
1分钟前
Hello应助Corn_Dog采纳,获得10
1分钟前
Amy完成签到,获得积分10
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024