Ultraviolet-induced fluorescence of oil spill recognition using a semi-supervised algorithm based on thickness and mixing proportion–emission matrices

荧光 环境科学 规范化(社会学) 降维 主成分分析 基质(化学分析) 荧光光谱法 维数之咒 紫外线 生物系统 计算机科学 材料科学 人工智能 复合材料 光学 光电子学 物理 社会学 人类学 生物
作者
Bowen Gong,Hongji Zhang,Xiaodong Wang,Ke Lian,Xinkai Li,Bo Chen,Hanlin Wang,Xiaoqian Niu
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
标识
DOI:10.1039/d2ay01776h
摘要

In recent years, marine oil spill accidents have been occurring frequently during extraction and transportation, and seriously damage the ecological balance. Accurate monitoring of oil spills plays a vital role in estimating oil spill volume, determination of liability, and clean-up. The oil that leaks into natural environments is not a single type of oil, but a mixture of various oil products, and the oil film thickness on the sea surface is uneven under the influence of wind and waves. Increasing the mixed oil film thickness dimension and the mix proportion dimension has been proposed to weaken the effect of the detection environment on the fluorescence measurement results. To preserve the relationships between the data of oil films with different thicknesses and the relationships between the data of oil films with different mixing proportions, the three-dimensional fluorescence spectral data of mixed oil films on a seawater surface were measured in the laboratory, producing a thickness-fluorescence matrix and a proportion-fluorescence matrix. The nonlinear variation of the fluorescence spectra was investigated according to the fluorescence lidar equation. This work pre-processes the data by sum normalization and two-dimensional principal component analysis (2DPCA) and uses the dimensionality reduction results as two feature-point views. Then, semi-supervised classification of collaborative training (co-training) with K-nearest neighbors (KNN) and a decision tree (DT) is used to identify the samples. The results show that the average overall accuracy of this coupling model can reach 100%, which is 20.49% higher than that of the thickness-only view. Using unlabeled data can reduce the cost of data acquisition, improve the classification accuracy and generalization ability, and provide theoretical significance and application prospects for discrimination of spectrally similar oil species in natural marine environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研炸巴完成签到,获得积分10
刚刚
2秒前
淅淅沥沥发布了新的文献求助10
2秒前
2秒前
朱祥龙发布了新的文献求助10
4秒前
lhx发布了新的文献求助10
4秒前
三土应助hkh采纳,获得10
4秒前
无辜的丹雪应助hkh采纳,获得10
4秒前
霜降应助hkh采纳,获得10
4秒前
专注白昼应助hkh采纳,获得10
4秒前
别不开星完成签到,获得积分10
5秒前
虚拟的鞋垫完成签到,获得积分10
5秒前
gege发布了新的文献求助10
5秒前
5秒前
5秒前
科研炸巴发布了新的文献求助10
5秒前
6秒前
ZSH发布了新的文献求助10
7秒前
8秒前
8秒前
zzzwww发布了新的文献求助10
11秒前
kevindm发布了新的文献求助30
11秒前
11秒前
善良茗茗发布了新的文献求助10
12秒前
可爱的函函应助lhx采纳,获得10
12秒前
12秒前
yuzhou完成签到 ,获得积分10
13秒前
13秒前
逢强必赢完成签到,获得积分10
14秒前
科研通AI6应助xixi采纳,获得10
14秒前
16秒前
烟花应助zhaosibo020118采纳,获得10
16秒前
复方蛋酥卷完成签到,获得积分10
16秒前
六月歌者发布了新的文献求助20
16秒前
共享精神应助尼古拉斯采纳,获得10
17秒前
老迟到的尔白牛牛完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573