Modeling High-Order Relationships: Brain-Inspired Hypergraph-Induced Multimodal-Multitask Framework for Semantic Comprehension

超图 计算机科学 模式 理解力 利用 模态(人机交互) 人工智能 情绪分析 机器学习 自然语言处理 数学 社会科学 计算机安全 离散数学 社会学 程序设计语言
作者
Xian Sun,Fanglong Yao,Chibiao Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2023.3252359
摘要

Semantic comprehension aims to reasonably reproduce people's real intentions or thoughts, e.g., sentiment, humor, sarcasm, motivation, and offensiveness, from multiple modalities. It can be instantiated as a multimodal-oriented multitask classification issue and applied to scenarios, such as online public opinion supervision and political stance analysis. Previous methods generally employ multimodal learning alone to deal with varied modalities or solely exploit multitask learning to solve various tasks, a few to unify both into an integrated framework. Moreover, multimodal-multitask cooperative learning could inevitably encounter the challenges of modeling high-order relationships, i.e., intramodal, intermodal, and intertask relationships. Related research of brain sciences proves that the human brain possesses multimodal perception and multitask cognition for semantic comprehension via decomposing, associating, and synthesizing processes. Thus, establishing a brain-inspired semantic comprehension framework to bridge the gap between multimodal and multitask learning becomes the primary motivation of this work. Motivated by the superiority of the hypergraph in modeling high-order relations, in this article, we propose a hypergraph-induced multimodal-multitask (HIMM) network for semantic comprehension. HIMM incorporates monomodal, multimodal, and multitask hypergraph networks to, respectively, mimic the decomposing, associating, and synthesizing processes to tackle the intramodal, intermodal, and intertask relationships accordingly. Furthermore, temporal and spatial hypergraph constructions are designed to model the relationships in the modality with sequential and spatial structures, respectively. Also, we elaborate a hypergraph alternative updating algorithm to ensure that vertices aggregate to update hyperedges and hyperedges converge to update their connected vertices. Experiments on the dataset with two modalities and five tasks verify the effectiveness of HIMM on semantic comprehension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
背后的鹭洋完成签到,获得积分10
刚刚
1秒前
淡淡的发卡完成签到,获得积分10
1秒前
wjswift完成签到,获得积分10
1秒前
1秒前
暗黑同学完成签到,获得积分10
2秒前
admin发布了新的文献求助10
2秒前
赵丹发布了新的文献求助10
3秒前
Jundy完成签到,获得积分10
3秒前
李白完成签到,获得积分10
3秒前
3秒前
彩色蘑菇完成签到,获得积分10
3秒前
4秒前
4秒前
SYLH应助lqkcqmu采纳,获得30
4秒前
5秒前
TANG完成签到,获得积分10
5秒前
6秒前
pm完成签到,获得积分20
6秒前
热情铭发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Jenaloe发布了新的文献求助10
8秒前
自然1111发布了新的文献求助10
8秒前
李健的小迷弟应助哈士轩采纳,获得10
8秒前
8秒前
8秒前
Akim应助怡然嚣采纳,获得30
9秒前
顾矜应助xuexi采纳,获得10
9秒前
lone623发布了新的文献求助10
9秒前
mrz发布了新的文献求助10
9秒前
yx_cheng应助OK采纳,获得30
9秒前
10秒前
菜鸟12完成签到,获得积分20
10秒前
10秒前
20250702完成签到 ,获得积分10
10秒前
夕照古风发布了新的文献求助10
10秒前
单薄的夜南应助wangyalei采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620