Enantiospecific Uptake and Depuration Kinetics of Chiral Metoprolol and Venlafaxine in Marine Medaka (Oryzias melastigma): Tissue Distribution and Metabolite Formation

美托洛尔 文拉法辛 生物浓缩 化学 毒物动力学 代谢物 生物累积 药理学 对映体 药代动力学 环境化学 内科学 立体化学 生物 医学 生物化学 抗抑郁药 海马体
作者
Linjie Jin,Qi Wang,Yuanlin Meng,Jianwen Gu,Kai Zhang,Paul K.S. Lam,Yuefei Ruan
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (11): 4471-4480
标识
DOI:10.1021/acs.est.2c08379
摘要

The increasing use of chiral pharmaceuticals has led to their widespread presence in the environment. However, their toxicokinetics have rarely been reported. Therefore, the tissue-specific uptake and depuration kinetics of two pairs of pharmaceutical enantiomers, S-(−)-metoprolol versus R-(+)-metoprolol and S-(+)-venlafaxine versus R-(−)-venlafaxine, were studied in marine medaka (Oryzias melastigma) during a 28-day exposure and 14-day clearance period. The toxicokinetics of the studied pharmaceuticals, including uptake and depuration rate constants, depuration half-life (t1/2), and bioconcentration factor (BCF), were reported for the first time. The whole-fish results demonstrated a higher S- than R-venlafaxine bioaccumulation potential, whereas no significant difference was observed between S- and R-metoprolol. O-desmethyl-metoprolol (ODM) and α-hydroxy-metoprolol (AHM) were the main metoprolol metabolites identified by suspect screening, and the ratios of ODM to AHM were 3.08 and 1.35 for S- and R-metoprolol, respectively. N,O-Didesmethyl-venlafaxine (NODDV) and N-desmethyl-venlafaxine (NDV) were the main venlafaxine metabolites, and the ratios of NODDV to NDV were 1.55 and 0.73 for S- and R-venlafaxine, respectively. The highest tissue-specific BCFs of the four enantiomers were all found in the eyes, meriting in-depth investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
jiayou发布了新的文献求助10
1秒前
陈早早发布了新的文献求助10
1秒前
2秒前
qiushui发布了新的文献求助10
2秒前
2秒前
xiaowen发布了新的文献求助10
2秒前
汉堡包应助无奈世立采纳,获得30
2秒前
愿好完成签到,获得积分10
2秒前
3秒前
买瓜吗发布了新的文献求助10
3秒前
无私迎海发布了新的文献求助10
4秒前
研友_n0DQAn发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
yvonne关注了科研通微信公众号
6秒前
逸风望发布了新的文献求助10
6秒前
6秒前
ysx关闭了ysx文献求助
6秒前
6秒前
爆米花应助陈早早采纳,获得10
7秒前
愉快的芒果完成签到,获得积分10
7秒前
8秒前
小蘑菇应助等待薯片采纳,获得10
9秒前
9秒前
9秒前
情怀应助栗子采纳,获得20
9秒前
桐桐应助啦啦小牛采纳,获得10
9秒前
Owen应助这道题没有解采纳,获得10
9秒前
SciGPT应助上杉绘梨衣采纳,获得10
9秒前
10秒前
10秒前
丘比特应助lyznbhh采纳,获得10
10秒前
10秒前
那里一个人都没有完成签到,获得积分10
11秒前
11秒前
张成协完成签到,获得积分10
11秒前
鸽子完成签到,获得积分10
12秒前
穆仰发布了新的文献求助10
12秒前
magicyang完成签到,获得积分10
12秒前
spc68应助jaya采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709599
求助须知:如何正确求助?哪些是违规求助? 5195670
关于积分的说明 15257552
捐赠科研通 4862316
什么是DOI,文献DOI怎么找? 2610036
邀请新用户注册赠送积分活动 1560401
关于科研通互助平台的介绍 1518089