Metabolic Anomaly Appearance Aware U-Net for Automatic Lymphoma Segmentation in Whole-Body PET/CT Scans

人工智能 分割 计算机科学 一致性(知识库) 模式识别(心理学) PET-CT 正电子发射断层摄影术 放射科 医学
作者
Tianyu Shi,Huiyan Jiang,Meng Wang,Zhaoshuo Diao,Guoxu Zhang,Yu‐Dong Yao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 2465-2476 被引量:3
标识
DOI:10.1109/jbhi.2023.3248099
摘要

Positron emission tomography-computed tomography (PET/CT) is an essential imaging instrument for lymphoma diagnosis and prognosis. PET/CT image based automatic lymphoma segmentation is increasingly used in the clinical community. U-Net-like deep learning methods have been widely used for PET/CT in this task. However, their performance is limited by the lack of sufficient annotated data, due to the existence of tumor heterogeneity. To address this issue, we propose an unsupervised image generation scheme to improve the performance of another independent supervised U-Net for lymphoma segmentation by capturing metabolic anomaly appearance (MAA). Firstly, we propose an anatomical-metabolic consistency generative adversarial network (AMC-GAN) as an auxiliary branch of U-Net. Specifically, AMC-GAN learns normal anatomical and metabolic information representations using co-aligned whole-body PET/CT scans. In the generator of AMC-GAN, we propose a complementary attention block to enhance the feature representation of low-intensity areas. Then, the trained AMC-GAN is used to reconstruct the corresponding pseudo-normal PET scans to capture MAAs. Finally, combined with the original PET/CT images, MAAs are used as the prior information for improving the performance of lymphoma segmentation. Experiments are conducted on a clinical dataset containing 191 normal subjects and 53 patients with lymphomas. The results demonstrate that the anatomical-metabolic consistency representations obtained from unlabeled paired PET/CT scans can be helpful for more accurate lymphoma segmentation, which suggest the potential of our approach to support physician diagnosis in practical clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Junlei完成签到,获得积分10
1秒前
独自受罪完成签到 ,获得积分10
1秒前
俊藏星河完成签到,获得积分10
1秒前
jason完成签到,获得积分10
1秒前
开心的白昼完成签到,获得积分10
2秒前
126326发布了新的文献求助10
2秒前
tianshuai完成签到,获得积分10
2秒前
小王完成签到 ,获得积分10
3秒前
FIN应助玺月洛离采纳,获得30
3秒前
烟花应助务实的鸽子采纳,获得10
3秒前
缓慢如南完成签到,获得积分10
3秒前
li发布了新的文献求助10
4秒前
yukime完成签到,获得积分10
5秒前
悦耳从彤完成签到,获得积分10
5秒前
5秒前
OnionJJ完成签到,获得积分10
5秒前
yangben完成签到,获得积分10
6秒前
橙汁完成签到,获得积分10
6秒前
蜡笔小新完成签到,获得积分10
6秒前
小二郎应助guojingjing采纳,获得10
6秒前
7秒前
相爱就永远在一起完成签到,获得积分10
7秒前
程程完成签到,获得积分10
7秒前
冷傲路灯完成签到 ,获得积分10
7秒前
加减乘除发布了新的文献求助10
7秒前
洋山芋完成签到,获得积分10
7秒前
8秒前
tianshuai发布了新的文献求助10
9秒前
qianlan发布了新的文献求助10
9秒前
脑洞疼应助科研小白采纳,获得10
9秒前
哈哈2022完成签到,获得积分10
10秒前
侠客完成签到 ,获得积分10
10秒前
yunjian1583完成签到,获得积分10
11秒前
Antares完成签到,获得积分10
11秒前
K珑完成签到,获得积分10
12秒前
Tomi发布了新的文献求助10
12秒前
月亮之下完成签到 ,获得积分10
12秒前
与可完成签到,获得积分10
12秒前
芒果豆豆发布了新的文献求助10
14秒前
Galaxy完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890