MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction

计算机科学 嵌入 注意力网络 人工智能 变压器 稳健性(进化) 机器学习 数据挖掘 生物化学 量子力学 基因 物理 电压 化学
作者
Ran Zhang,Zhan Jie Wang,Xuezhi Wang,Zhen Meng,Wenjuan Cui
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:6
标识
DOI:10.1093/bib/bbad079
摘要

Abstract Drug–target interaction (DTI) prediction can identify novel ligands for specific protein targets, and facilitate the rapid screening of effective new drug candidates to speed up the drug discovery process. However, the current methods are not sensitive enough to complex topological structures, and complicated relations between multiple node types are not fully captured yet. To address the above challenges, we construct a metapath-based heterogeneous bioinformatics network, and then propose a DTI prediction method with metapath-based hierarchical transformer and attention network for drug–target interaction prediction (MHTAN-DTI), applying metapath instance-level transformer, single-semantic attention and multi-semantic attention to generate low-dimensional vector representations of drugs and proteins. Metapath instance-level transformer performs internal aggregation on the metapath instances, and models global context information to capture long-range dependencies. Single-semantic attention learns the semantics of a certain metapath type, introduces the central node weight and assigns different weights to different metapath instances to obtain the semantic-specific node embedding. Multi-semantic attention captures the importance of different metapath types and performs weighted fusion to attain the final node embedding. The hierarchical transformer and attention network weakens the influence of noise data on the DTI prediction results, and enhances the robustness and generalization ability of MHTAN-DTI. Compared with the state-of-the-art DTI prediction methods, MHTAN-DTI achieves significant performance improvements. In addition, we also conduct sufficient ablation studies and visualize the experimental results. All the results demonstrate that MHTAN-DTI can offer a powerful and interpretable tool for integrating heterogeneous information to predict DTIs and provide new insights into drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
alan完成签到 ,获得积分10
刚刚
沐浠发布了新的文献求助10
1秒前
舒心的满天完成签到 ,获得积分10
2秒前
cyanpomelo发布了新的文献求助10
2秒前
丘比特应助若尘采纳,获得10
2秒前
3秒前
CodeCraft应助yangfeidong采纳,获得10
4秒前
chenshiyi185完成签到,获得积分10
5秒前
快乐的胖子应助三哥采纳,获得30
5秒前
7秒前
斯文钢笔完成签到 ,获得积分10
8秒前
9秒前
山雀完成签到,获得积分10
9秒前
BINGBONG关注了科研通微信公众号
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
浮游应助11采纳,获得10
13秒前
yangfeidong发布了新的文献求助10
15秒前
15秒前
16秒前
心猿应助g0123采纳,获得10
17秒前
17秒前
yuilcl发布了新的文献求助10
18秒前
wbshore发布了新的文献求助10
20秒前
20秒前
聪慧的正豪应助郑浩采纳,获得10
21秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
orixero应助巧乐兹采纳,获得10
25秒前
瓦力文发布了新的文献求助10
25秒前
28秒前
生动大白菜真实的钥匙完成签到 ,获得积分10
29秒前
29秒前
CipherSage应助yuilcl采纳,获得10
30秒前
香蕉觅云应助嗬娜采纳,获得10
30秒前
坦率网络发布了新的文献求助10
30秒前
Jasper应助小巩采纳,获得10
31秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941102
求助须知:如何正确求助?哪些是违规求助? 4207170
关于积分的说明 13076816
捐赠科研通 3985940
什么是DOI,文献DOI怎么找? 2182404
邀请新用户注册赠送积分活动 1197920
关于科研通互助平台的介绍 1110281