MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction

计算机科学 嵌入 注意力网络 人工智能 变压器 稳健性(进化) 机器学习 数据挖掘 生物化学 量子力学 基因 物理 电压 化学
作者
Ran Zhang,Zhan Jie Wang,Xuezhi Wang,Zhen Meng,Wenjuan Cui
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:6
标识
DOI:10.1093/bib/bbad079
摘要

Abstract Drug–target interaction (DTI) prediction can identify novel ligands for specific protein targets, and facilitate the rapid screening of effective new drug candidates to speed up the drug discovery process. However, the current methods are not sensitive enough to complex topological structures, and complicated relations between multiple node types are not fully captured yet. To address the above challenges, we construct a metapath-based heterogeneous bioinformatics network, and then propose a DTI prediction method with metapath-based hierarchical transformer and attention network for drug–target interaction prediction (MHTAN-DTI), applying metapath instance-level transformer, single-semantic attention and multi-semantic attention to generate low-dimensional vector representations of drugs and proteins. Metapath instance-level transformer performs internal aggregation on the metapath instances, and models global context information to capture long-range dependencies. Single-semantic attention learns the semantics of a certain metapath type, introduces the central node weight and assigns different weights to different metapath instances to obtain the semantic-specific node embedding. Multi-semantic attention captures the importance of different metapath types and performs weighted fusion to attain the final node embedding. The hierarchical transformer and attention network weakens the influence of noise data on the DTI prediction results, and enhances the robustness and generalization ability of MHTAN-DTI. Compared with the state-of-the-art DTI prediction methods, MHTAN-DTI achieves significant performance improvements. In addition, we also conduct sufficient ablation studies and visualize the experimental results. All the results demonstrate that MHTAN-DTI can offer a powerful and interpretable tool for integrating heterogeneous information to predict DTIs and provide new insights into drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助lixin采纳,获得10
刚刚
终于完成签到,获得积分20
刚刚
刚刚
维多利亚少年完成签到,获得积分10
刚刚
刚刚
1秒前
残酷的风完成签到,获得积分10
1秒前
2秒前
2秒前
研友_VZG7GZ应助美满的初之采纳,获得10
3秒前
超帅完成签到,获得积分10
4秒前
666发布了新的文献求助10
4秒前
上官若男应助江阳宏采纳,获得50
5秒前
陆康完成签到 ,获得积分10
5秒前
tonyfountain完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
王海海完成签到 ,获得积分10
7秒前
99giddens应助杨咩咩采纳,获得200
7秒前
科研通AI2S应助优秀傲松采纳,获得10
8秒前
欣慰的醉香完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
修文发布了新的文献求助10
9秒前
所所应助自由雅容采纳,获得10
9秒前
Yu发布了新的文献求助10
9秒前
带头大哥应助None采纳,获得10
10秒前
科研通AI6.1应助ZeKaWang采纳,获得50
10秒前
Owen应助飞飞采纳,获得10
11秒前
12秒前
VK2801发布了新的文献求助10
12秒前
陈隆发布了新的文献求助10
12秒前
HH应助Yqx采纳,获得10
12秒前
13秒前
善学以致用应助zzh采纳,获得10
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609