MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction

计算机科学 嵌入 注意力网络 人工智能 变压器 稳健性(进化) 机器学习 数据挖掘 生物化学 量子力学 基因 物理 电压 化学
作者
Ran Zhang,Zhan Jie Wang,Xuezhi Wang,Zhen Meng,Wenjuan Cui
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:6
标识
DOI:10.1093/bib/bbad079
摘要

Abstract Drug–target interaction (DTI) prediction can identify novel ligands for specific protein targets, and facilitate the rapid screening of effective new drug candidates to speed up the drug discovery process. However, the current methods are not sensitive enough to complex topological structures, and complicated relations between multiple node types are not fully captured yet. To address the above challenges, we construct a metapath-based heterogeneous bioinformatics network, and then propose a DTI prediction method with metapath-based hierarchical transformer and attention network for drug–target interaction prediction (MHTAN-DTI), applying metapath instance-level transformer, single-semantic attention and multi-semantic attention to generate low-dimensional vector representations of drugs and proteins. Metapath instance-level transformer performs internal aggregation on the metapath instances, and models global context information to capture long-range dependencies. Single-semantic attention learns the semantics of a certain metapath type, introduces the central node weight and assigns different weights to different metapath instances to obtain the semantic-specific node embedding. Multi-semantic attention captures the importance of different metapath types and performs weighted fusion to attain the final node embedding. The hierarchical transformer and attention network weakens the influence of noise data on the DTI prediction results, and enhances the robustness and generalization ability of MHTAN-DTI. Compared with the state-of-the-art DTI prediction methods, MHTAN-DTI achieves significant performance improvements. In addition, we also conduct sufficient ablation studies and visualize the experimental results. All the results demonstrate that MHTAN-DTI can offer a powerful and interpretable tool for integrating heterogeneous information to predict DTIs and provide new insights into drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pwang_ecust发布了新的文献求助10
1秒前
1秒前
美丽梦桃发布了新的文献求助10
1秒前
yznfly应助班班采纳,获得20
2秒前
2秒前
和谐的数据线完成签到,获得积分10
2秒前
共享精神应助RNAPW采纳,获得10
2秒前
2秒前
3秒前
顾矜应助Fjun采纳,获得10
3秒前
领导范儿应助小李采纳,获得10
3秒前
linnnna发布了新的文献求助10
3秒前
大模型应助Chali采纳,获得10
4秒前
4秒前
4秒前
星辰大海应助小夭采纳,获得10
4秒前
希望天下0贩的0应助家伟采纳,获得10
4秒前
上官若男应助Lorry采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
yy发布了新的文献求助10
6秒前
6秒前
07关注了科研通微信公众号
6秒前
wanci应助sanmumu采纳,获得10
6秒前
7秒前
1900tdlemon发布了新的文献求助10
8秒前
打打应助大方的冰旋采纳,获得10
8秒前
8秒前
Li发布了新的文献求助10
8秒前
blackgoat完成签到,获得积分10
8秒前
传奇3应助液氧采纳,获得10
8秒前
ikouyo完成签到 ,获得积分10
9秒前
9秒前
10秒前
橘子发布了新的文献求助10
10秒前
sen完成签到,获得积分10
11秒前
Chillym完成签到 ,获得积分10
11秒前
无极微光应助柠檬不萌采纳,获得20
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095