MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction

计算机科学 嵌入 注意力网络 人工智能 变压器 稳健性(进化) 机器学习 数据挖掘 生物化学 量子力学 基因 物理 电压 化学
作者
Ran Zhang,Zhan Jie Wang,Xuezhi Wang,Zhen Meng,Wenjuan Cui
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:6
标识
DOI:10.1093/bib/bbad079
摘要

Abstract Drug–target interaction (DTI) prediction can identify novel ligands for specific protein targets, and facilitate the rapid screening of effective new drug candidates to speed up the drug discovery process. However, the current methods are not sensitive enough to complex topological structures, and complicated relations between multiple node types are not fully captured yet. To address the above challenges, we construct a metapath-based heterogeneous bioinformatics network, and then propose a DTI prediction method with metapath-based hierarchical transformer and attention network for drug–target interaction prediction (MHTAN-DTI), applying metapath instance-level transformer, single-semantic attention and multi-semantic attention to generate low-dimensional vector representations of drugs and proteins. Metapath instance-level transformer performs internal aggregation on the metapath instances, and models global context information to capture long-range dependencies. Single-semantic attention learns the semantics of a certain metapath type, introduces the central node weight and assigns different weights to different metapath instances to obtain the semantic-specific node embedding. Multi-semantic attention captures the importance of different metapath types and performs weighted fusion to attain the final node embedding. The hierarchical transformer and attention network weakens the influence of noise data on the DTI prediction results, and enhances the robustness and generalization ability of MHTAN-DTI. Compared with the state-of-the-art DTI prediction methods, MHTAN-DTI achieves significant performance improvements. In addition, we also conduct sufficient ablation studies and visualize the experimental results. All the results demonstrate that MHTAN-DTI can offer a powerful and interpretable tool for integrating heterogeneous information to predict DTIs and provide new insights into drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZFY关闭了ZFY文献求助
刚刚
刚刚
支安白发布了新的文献求助10
1秒前
1秒前
炙热面包发布了新的文献求助20
1秒前
1秒前
苏silence发布了新的文献求助10
1秒前
张锐斌完成签到,获得积分10
1秒前
594778089完成签到,获得积分20
1秒前
豆包完成签到,获得积分10
1秒前
shan完成签到,获得积分10
2秒前
Owen应助缥缈的青旋采纳,获得10
2秒前
dadabad完成签到 ,获得积分10
2秒前
凝若霜晨发布了新的文献求助10
2秒前
如常完成签到,获得积分10
4秒前
要奋斗的小番茄完成签到,获得积分10
4秒前
苻人英完成签到,获得积分10
4秒前
dr1nk完成签到,获得积分10
4秒前
4秒前
Lucas应助豆包采纳,获得10
4秒前
zmz完成签到,获得积分10
5秒前
5秒前
5秒前
594778089发布了新的文献求助10
5秒前
BIANYAN发布了新的文献求助10
6秒前
大白完成签到,获得积分10
6秒前
yangdann完成签到,获得积分10
6秒前
无奈凡波完成签到 ,获得积分10
6秒前
6秒前
Yoyo发布了新的文献求助10
6秒前
榴莲完成签到,获得积分10
7秒前
蓝天发布了新的文献求助10
7秒前
shore完成签到,获得积分10
7秒前
q151发布了新的文献求助10
8秒前
8秒前
薄荷奶绿完成签到,获得积分10
8秒前
无聊又夏完成签到,获得积分10
8秒前
9秒前
xiaomeng发布了新的文献求助10
9秒前
YU完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005