MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction

计算机科学 嵌入 注意力网络 人工智能 变压器 稳健性(进化) 机器学习 数据挖掘 生物化学 量子力学 基因 物理 电压 化学
作者
Ran Zhang,Zhan Jie Wang,Xuezhi Wang,Zhen Meng,Wenjuan Cui
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:6
标识
DOI:10.1093/bib/bbad079
摘要

Abstract Drug–target interaction (DTI) prediction can identify novel ligands for specific protein targets, and facilitate the rapid screening of effective new drug candidates to speed up the drug discovery process. However, the current methods are not sensitive enough to complex topological structures, and complicated relations between multiple node types are not fully captured yet. To address the above challenges, we construct a metapath-based heterogeneous bioinformatics network, and then propose a DTI prediction method with metapath-based hierarchical transformer and attention network for drug–target interaction prediction (MHTAN-DTI), applying metapath instance-level transformer, single-semantic attention and multi-semantic attention to generate low-dimensional vector representations of drugs and proteins. Metapath instance-level transformer performs internal aggregation on the metapath instances, and models global context information to capture long-range dependencies. Single-semantic attention learns the semantics of a certain metapath type, introduces the central node weight and assigns different weights to different metapath instances to obtain the semantic-specific node embedding. Multi-semantic attention captures the importance of different metapath types and performs weighted fusion to attain the final node embedding. The hierarchical transformer and attention network weakens the influence of noise data on the DTI prediction results, and enhances the robustness and generalization ability of MHTAN-DTI. Compared with the state-of-the-art DTI prediction methods, MHTAN-DTI achieves significant performance improvements. In addition, we also conduct sufficient ablation studies and visualize the experimental results. All the results demonstrate that MHTAN-DTI can offer a powerful and interpretable tool for integrating heterogeneous information to predict DTIs and provide new insights into drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
承乐发布了新的文献求助10
2秒前
2秒前
xian林完成签到,获得积分10
2秒前
3秒前
3秒前
莴笋叶发布了新的文献求助10
3秒前
3秒前
高兴的平露完成签到 ,获得积分10
3秒前
4秒前
睡醒喝瓶娃哈哈完成签到,获得积分10
4秒前
王帅完成签到,获得积分10
4秒前
八百标兵奔北坡完成签到 ,获得积分10
5秒前
香蕉觅云应助赵耀采纳,获得10
5秒前
能干可乐发布了新的文献求助10
5秒前
炙热愫发布了新的文献求助10
6秒前
drew发布了新的文献求助30
6秒前
yznfly给宣幻桃的求助进行了留言
6秒前
Bosen完成签到,获得积分10
6秒前
YZQ发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
ZZQQ完成签到,获得积分20
7秒前
山雷发布了新的文献求助10
7秒前
LinChen应助邵璞采纳,获得10
7秒前
7秒前
超级的鞅发布了新的文献求助10
8秒前
李健应助甜筒采纳,获得10
8秒前
9秒前
所所应助吧唧吧唧采纳,获得10
9秒前
jin_0124完成签到,获得积分10
9秒前
10秒前
young发布了新的文献求助10
11秒前
蛋子s发布了新的文献求助10
12秒前
zaq发布了新的文献求助10
12秒前
NexusExplorer应助超级的鞅采纳,获得10
12秒前
浪子应助科研通管家采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802