MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction

计算机科学 嵌入 注意力网络 人工智能 变压器 稳健性(进化) 机器学习 数据挖掘 生物化学 量子力学 基因 物理 电压 化学
作者
Ran Zhang,Zhan Jie Wang,Xuezhi Wang,Zhen Meng,Wenjuan Cui
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:6
标识
DOI:10.1093/bib/bbad079
摘要

Abstract Drug–target interaction (DTI) prediction can identify novel ligands for specific protein targets, and facilitate the rapid screening of effective new drug candidates to speed up the drug discovery process. However, the current methods are not sensitive enough to complex topological structures, and complicated relations between multiple node types are not fully captured yet. To address the above challenges, we construct a metapath-based heterogeneous bioinformatics network, and then propose a DTI prediction method with metapath-based hierarchical transformer and attention network for drug–target interaction prediction (MHTAN-DTI), applying metapath instance-level transformer, single-semantic attention and multi-semantic attention to generate low-dimensional vector representations of drugs and proteins. Metapath instance-level transformer performs internal aggregation on the metapath instances, and models global context information to capture long-range dependencies. Single-semantic attention learns the semantics of a certain metapath type, introduces the central node weight and assigns different weights to different metapath instances to obtain the semantic-specific node embedding. Multi-semantic attention captures the importance of different metapath types and performs weighted fusion to attain the final node embedding. The hierarchical transformer and attention network weakens the influence of noise data on the DTI prediction results, and enhances the robustness and generalization ability of MHTAN-DTI. Compared with the state-of-the-art DTI prediction methods, MHTAN-DTI achieves significant performance improvements. In addition, we also conduct sufficient ablation studies and visualize the experimental results. All the results demonstrate that MHTAN-DTI can offer a powerful and interpretable tool for integrating heterogeneous information to predict DTIs and provide new insights into drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助10
刚刚
清爽笑翠完成签到 ,获得积分10
刚刚
56jhjl完成签到,获得积分10
刚刚
大旭完成签到 ,获得积分10
1秒前
1秒前
opbillows发布了新的文献求助10
2秒前
Yolo发布了新的文献求助10
5秒前
5秒前
天天快乐应助健忘的若风采纳,获得10
6秒前
SYLH应助jiulin采纳,获得10
7秒前
7秒前
彩色的无声完成签到,获得积分20
8秒前
TTT完成签到,获得积分10
8秒前
clever关注了科研通微信公众号
9秒前
许子健发布了新的文献求助10
9秒前
10秒前
墨墨完成签到,获得积分10
12秒前
13秒前
14秒前
善学以致用应助咿咿呀呀采纳,获得30
14秒前
汉堡包应助Yolo采纳,获得10
14秒前
14秒前
念姬发布了新的文献求助10
17秒前
刘敏小七完成签到,获得积分10
17秒前
17秒前
慕青应助T拐拐采纳,获得10
18秒前
19秒前
19秒前
饺子完成签到,获得积分10
19秒前
Gao发布了新的文献求助10
20秒前
核桃发布了新的文献求助10
23秒前
像个小蛤蟆完成签到 ,获得积分10
24秒前
orixero应助博修采纳,获得10
24秒前
25秒前
咿咿呀呀发布了新的文献求助30
26秒前
Macaco完成签到,获得积分10
27秒前
qweqwe完成签到 ,获得积分10
28秒前
28秒前
28秒前
Gao完成签到,获得积分20
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388