MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction

计算机科学 嵌入 注意力网络 人工智能 变压器 稳健性(进化) 机器学习 数据挖掘 生物化学 量子力学 基因 物理 电压 化学
作者
Ran Zhang,Zhan Jie Wang,Xuezhi Wang,Zhen Meng,Wenjuan Cui
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:6
标识
DOI:10.1093/bib/bbad079
摘要

Abstract Drug–target interaction (DTI) prediction can identify novel ligands for specific protein targets, and facilitate the rapid screening of effective new drug candidates to speed up the drug discovery process. However, the current methods are not sensitive enough to complex topological structures, and complicated relations between multiple node types are not fully captured yet. To address the above challenges, we construct a metapath-based heterogeneous bioinformatics network, and then propose a DTI prediction method with metapath-based hierarchical transformer and attention network for drug–target interaction prediction (MHTAN-DTI), applying metapath instance-level transformer, single-semantic attention and multi-semantic attention to generate low-dimensional vector representations of drugs and proteins. Metapath instance-level transformer performs internal aggregation on the metapath instances, and models global context information to capture long-range dependencies. Single-semantic attention learns the semantics of a certain metapath type, introduces the central node weight and assigns different weights to different metapath instances to obtain the semantic-specific node embedding. Multi-semantic attention captures the importance of different metapath types and performs weighted fusion to attain the final node embedding. The hierarchical transformer and attention network weakens the influence of noise data on the DTI prediction results, and enhances the robustness and generalization ability of MHTAN-DTI. Compared with the state-of-the-art DTI prediction methods, MHTAN-DTI achieves significant performance improvements. In addition, we also conduct sufficient ablation studies and visualize the experimental results. All the results demonstrate that MHTAN-DTI can offer a powerful and interpretable tool for integrating heterogeneous information to predict DTIs and provide new insights into drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助李平采纳,获得10
刚刚
上官若男应助hyt采纳,获得10
刚刚
刚刚
调皮的晓凡完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
踏实的语山完成签到 ,获得积分10
1秒前
英吉利25发布了新的文献求助10
1秒前
大模型应助科研锐采纳,获得10
1秒前
飘逸太英发布了新的文献求助10
2秒前
2秒前
Oscillator发布了新的文献求助10
3秒前
3秒前
Criminology34应助陈小明采纳,获得10
3秒前
草帽完成签到,获得积分10
4秒前
安琪发布了新的文献求助10
4秒前
负责玉米发布了新的文献求助30
5秒前
ronll发布了新的文献求助10
6秒前
七里海完成签到,获得积分10
7秒前
科研通AI6应助安妮采纳,获得10
7秒前
芝士椰果发布了新的文献求助10
7秒前
记得笑发布了新的文献求助10
8秒前
帅帅完成签到,获得积分10
8秒前
甜蜜的大象完成签到 ,获得积分10
8秒前
风清扬发布了新的文献求助10
8秒前
8秒前
9秒前
顺利秋灵完成签到,获得积分20
10秒前
10秒前
LZS完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
科研锐发布了新的文献求助10
13秒前
zws发布了新的文献求助10
14秒前
张艺馨完成签到,获得积分10
14秒前
飘逸太英完成签到,获得积分20
14秒前
14秒前
小鲨鱼完成签到,获得积分20
15秒前
善学以致用应助记得笑采纳,获得10
15秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277