MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction

计算机科学 嵌入 注意力网络 人工智能 变压器 稳健性(进化) 机器学习 数据挖掘 生物化学 量子力学 基因 物理 电压 化学
作者
Ran Zhang,Zhan Jie Wang,Xuezhi Wang,Zhen Meng,Wenjuan Cui
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:6
标识
DOI:10.1093/bib/bbad079
摘要

Abstract Drug–target interaction (DTI) prediction can identify novel ligands for specific protein targets, and facilitate the rapid screening of effective new drug candidates to speed up the drug discovery process. However, the current methods are not sensitive enough to complex topological structures, and complicated relations between multiple node types are not fully captured yet. To address the above challenges, we construct a metapath-based heterogeneous bioinformatics network, and then propose a DTI prediction method with metapath-based hierarchical transformer and attention network for drug–target interaction prediction (MHTAN-DTI), applying metapath instance-level transformer, single-semantic attention and multi-semantic attention to generate low-dimensional vector representations of drugs and proteins. Metapath instance-level transformer performs internal aggregation on the metapath instances, and models global context information to capture long-range dependencies. Single-semantic attention learns the semantics of a certain metapath type, introduces the central node weight and assigns different weights to different metapath instances to obtain the semantic-specific node embedding. Multi-semantic attention captures the importance of different metapath types and performs weighted fusion to attain the final node embedding. The hierarchical transformer and attention network weakens the influence of noise data on the DTI prediction results, and enhances the robustness and generalization ability of MHTAN-DTI. Compared with the state-of-the-art DTI prediction methods, MHTAN-DTI achieves significant performance improvements. In addition, we also conduct sufficient ablation studies and visualize the experimental results. All the results demonstrate that MHTAN-DTI can offer a powerful and interpretable tool for integrating heterogeneous information to predict DTIs and provide new insights into drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
LMX发布了新的文献求助10
1秒前
1秒前
1秒前
靓丽的发箍完成签到,获得积分10
1秒前
ppp完成签到,获得积分10
2秒前
科研通AI6应助凛冬采纳,获得10
2秒前
久ling关注了科研通微信公众号
2秒前
3秒前
3秒前
3秒前
3秒前
研友_Z63G18完成签到 ,获得积分10
3秒前
辛辛那提完成签到,获得积分10
3秒前
4秒前
4秒前
木辛完成签到,获得积分10
4秒前
Tsuki完成签到,获得积分10
5秒前
tkx完成签到,获得积分10
5秒前
徐沛完成签到,获得积分10
5秒前
WTH发布了新的文献求助10
6秒前
赘婿应助大胆绿柳采纳,获得10
6秒前
海林完成签到 ,获得积分10
7秒前
科研通AI6应助111采纳,获得10
7秒前
7秒前
黑米粥发布了新的文献求助10
7秒前
magiclinlin完成签到,获得积分10
7秒前
7秒前
司空剑封完成签到,获得积分10
8秒前
爆米花完成签到,获得积分10
8秒前
8秒前
xuan发布了新的文献求助10
8秒前
xingxinghan完成签到 ,获得积分10
8秒前
芝士奶盖有点咸完成签到 ,获得积分10
8秒前
lu完成签到,获得积分10
9秒前
hankongli完成签到 ,获得积分10
9秒前
慕青应助发发采纳,获得10
9秒前
Aicy1111111发布了新的文献求助10
9秒前
长情洙发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285