分子动力学
化学吸附
力场(虚构)
量子
统计物理学
计算机科学
扩散
分子
化学物理
吸附
材料科学
纳米技术
计算化学
化学
物理
人工智能
热力学
物理化学
量子力学
作者
Bowen Zheng,Felipe Lopes Oliveira,Rodrigo Neumann Barros Ferreira,M. Steiner,Hendrik F. Hamann,Grace X. Gu,Binquan Luan
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-03-08
卷期号:17 (6): 5579-5587
被引量:31
标识
DOI:10.1021/acsnano.2c11102
摘要
Among various porous solids for gas separation and purification, metal-organic frameworks (MOFs) are promising materials that potentially combine high CO2 uptake and CO2/N2 selectivity. So far, within the hundreds of thousands of MOF structures known today, it remains a challenge to computationally identify the best suited species. First principle-based simulations of CO2 adsorption in MOFs would provide the necessary accuracy; however, they are impractical due to the high computational cost. Classical force field-based simulations would be computationally feasible; however, they do not provide sufficient accuracy. Thus, the entropy contribution that requires both accurate force fields and sufficiently long computing time for sampling is difficult to obtain in simulations. Here, we report quantum-informed machine-learning force fields (QMLFFs) for atomistic simulations of CO2 in MOFs. We demonstrate that the method has a much higher computational efficiency (∼1000×) than the first-principle one while maintaining the quantum-level accuracy. As a proof of concept, we show that the QMLFF-based molecular dynamics simulations of CO2 in Mg-MOF-74 can predict the binding free energy landscape and the diffusion coefficient close to experimental values. The combination of machine learning and atomistic simulation helps achieve more accurate and efficient in silico evaluations of the chemisorption and diffusion of gas molecules in MOFs.
科研通智能强力驱动
Strongly Powered by AbleSci AI