Exploring the Potential of Gaofen-1/6 for Crop Monitoring: Generating Daily Decametric-Resolution Leaf Area Index Time Series

叶面积指数 遥感 卫星 环境科学 系列(地层学) 时间序列 均方误差 植被(病理学) 数学 气象学 统计 物理 地理 农学 医学 古生物学 病理 天文 生物
作者
Baodong Xu,Haodong Wei,Zhiwen Cai,Jingya Yang,Zhewei Zhang,Cong Wang,Jing Li,Jing Zhao,Yonghua Qu,Gaofei Yin,Aleixandre Verger
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2023.3257290
摘要

High spatiotemporal resolution time series of leaf area index (LAI) are essential for monitoring crop dynamics and validating coarse-resolution LAI products. The optical satellite sensors at decametric-resolution have historically suffered from a long revisit cycle and cloud contamination issues that hampered the acquisition of frequent and high-quality observations. The 16-m/4-day resolution of the new generation Gaofen-1 (GF-1) and Gaofen-6 (GF-6) satellites provide an unprecedented opportunity to address these limitations. Here we developed an effective strategy to generate daily 16-m LAI maps combing GF-1/6 data and ground LAINet measurements. All high-quality GF-1/6 observations were utilized first to derive smoothed time series of vegetation indices (VIs). Second, a random forest regression (RF-r) model was trained to link the VIs with corresponding field LAI measurements. The trained RF-r was finally employed to generate the LAI maps. Results demonstrated the reliability of the reconstructed daily VIs (relative error < 1%) and the derived LAI time series, which greatly benefited from GF-1/6 high frequency observations. The direct comparison with field LAI measurements by LAI-2200/LI-3000 showed the good performance of retrieved LAI maps, with Bias, RMSE and R 2 of 0.05, 0.59 and 0.75, respectively. The LAI time series well captured the spatiotemporal variation of crop growth. Furthermore, the continuous GF-1/6 LAI maps outperformed Sentinel-2 LAI estimates both in terms of temporal frequency and accuracy. Our study indicates the potential of GF-1/6 to generate continuous decametric-resolution LAI maps for fine-scale agricultural monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zwd完成签到,获得积分10
2秒前
XFan完成签到,获得积分10
2秒前
2秒前
漂亮采波发布了新的文献求助10
4秒前
嵩嵩应助drughunter009采纳,获得10
4秒前
5秒前
5秒前
张倩完成签到,获得积分10
5秒前
5秒前
NANYU发布了新的文献求助10
5秒前
5秒前
6秒前
顾白凡完成签到,获得积分10
6秒前
眯眯眼的衬衫应助xiaofeizhu采纳,获得10
6秒前
小盒儿发布了新的文献求助10
6秒前
隐形曼青应助搬砖美少女采纳,获得10
6秒前
7秒前
院士候选人之一完成签到,获得积分20
9秒前
9秒前
传奇3应助白亦冰采纳,获得10
10秒前
666发布了新的文献求助10
10秒前
11秒前
爆米花应助loey采纳,获得10
11秒前
Young完成签到,获得积分10
11秒前
张倩发布了新的文献求助10
11秒前
12秒前
Gnahz发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
雨霧雲发布了新的文献求助10
14秒前
海晨完成签到,获得积分10
14秒前
666完成签到,获得积分20
15秒前
香蕉你个笨啦啦完成签到,获得积分10
15秒前
彭于晏应助北岸初晴采纳,获得10
16秒前
Tushar完成签到,获得积分10
16秒前
17秒前
AeroY发布了新的文献求助10
17秒前
chase完成签到,获得积分10
17秒前
皛皛发布了新的文献求助10
18秒前
幽默的山雁发布了新的文献求助200
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954612
求助须知:如何正确求助?哪些是违规求助? 3500783
关于积分的说明 11100882
捐赠科研通 3231219
什么是DOI,文献DOI怎么找? 1786350
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751