Ruidi Zhang,Xiaoyi Chen,Yaxuan Duan,Pu Wang,Zhengshang Da
标识
DOI:10.1117/12.2668871
摘要
Traditional analytical algorithm needs to combine the transmission functions of grating and lens to generate a Computer Generated Hologram (CGH), so as to realize the distribution of three-dimensional (3D) multi-focal points in space, but the grating phase will inevitably produce high-order diffraction focus, resulting in energy loss, and the traditional analytic algorithm is more suitable for generating array multi-focal distribution with equal spacing. To solve this problem, this paper simplifies the traditional analytical algorithm, and proposes a method that only uses multi-lens phase and random phase superposition to generate the CGH required by the target light location, by changing the focal length of the lens phase, the multi-focus distribution along the z-axial direction of multiple independent focal planes is realized. Then the phase of these different focal planes is superimposed, and a 0~2π random phase modulation is added, which can quickly generate 3D multi-focus distribution with controllable number and position. The simulation results show that the energy uniformity of focal spot on each focal plane is between 89.45% and 98.08%. The experimental results show that the energy uniformity of focal spots on each focal plane is between 88.40% and 96.13%, which is consistent with the simulation results. Compared with traditional analytical algorithm, the proposed method is more universal for multi-focus distribution in 3D space without special requirements of array distribution with equal spacing, and has potential application value in laser processing, holographic optical tweezers, optical communication and other fields.