数学
消散
指数衰减
流体静力平衡
指数稳定性
数学分析
领域(数学分析)
磁场
非线性系统
指数增长
零(语言学)
指数函数
振荡(细胞信号)
理论(学习稳定性)
磁流体力学
磁电机
物理
量子力学
磁铁
机器学习
哲学
生物
遗传学
语言学
计算机科学
作者
Yajie Zhang,Weiwei Wang
标识
DOI:10.1080/00036811.2023.2190340
摘要
The stability and large-time behavior problem on the magneto-micropolar equations has evoked a considerable interest in recent years. In this paper, we study the stability and exponential decay near magnetic hydrostatic equilibrium to the two-dimensional magneto-micropolar equations with partial dissipation in the domain Ω=T×R. In particular, we takes advantage of the geometry of the domain T×R to divide u into zeroth mode and the nonzero modes, and obey a strong version of the Poincaré's inequality, which plays a crucial role in controlling the nonlinearity. Moreover, we find that the oscillation part of the solution decays exponentially to zero. Finally, our result mathematically verifies that the stabilization effect of a background magnetic field on magneto-micropolar fluids.
科研通智能强力驱动
Strongly Powered by AbleSci AI