Localizing From Classification: Self-Directed Weakly Supervised Object Localization for Remote Sensing Images

计算机科学 对象(语法) 特征(语言学) 利用 人工智能 符号 遥感 数学 地理 计算机安全 语言学 算术 哲学
作者
Jing Bai,Junjie Ren,Zhu Xiao,Zheng Chen,Chengxi Gao,Talal Ahmed Ali Ali,Licheng Jiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:8
标识
DOI:10.1109/tnnls.2023.3309889
摘要

In recent years, object localization and detection methods in remote sensing images (RSIs) have received increasing attention due to their broad applications. However, most previous fully supervised methods require a large number of time-consuming and labor-intensive instance-level annotations. Compared with those fully supervised methods, weakly supervised object localization (WSOL) aims to recognize object instances using only image-level labels, which greatly saves the labeling costs of RSIs. In this article, we propose a self-directed weakly supervised strategy (SD-WSS) to perform WSOL in RSIs. To specify, we fully exploit and enhance the spatial feature extraction capability of the RSIs' classification model to accurately localize the objects of interest. To alleviate the serious discriminative region problem exhibited by previous WSOL methods, the spatial location information implicit in the classification model is carefully extracted by GradCAM ++ to guide the learning procedure. Furthermore, to eliminate the interference from complex backgrounds of RSIs, we design a novel self-directed loss to make the model optimize itself and explicitly tell it where to look. Finally, we review and annotate the existing remote sensing scene classification dataset and create two new WSOL benchmarks in RSIs, named C45V2 and PN2. We conduct extensive experiments to evaluate the proposed method and six mainstream WSOL methods with three backbones on C45V2 and PN2. The results demonstrate that our proposed method achieves better performance when compared with state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dake完成签到,获得积分10
刚刚
一拳一个小欧阳完成签到 ,获得积分10
刚刚
Gang完成签到,获得积分10
刚刚
shanlu完成签到,获得积分10
1秒前
丫丫完成签到 ,获得积分10
1秒前
Wonder完成签到,获得积分10
2秒前
guoguo完成签到,获得积分10
2秒前
分子遗传小菜鸟完成签到,获得积分10
2秒前
HCCha完成签到,获得积分10
3秒前
婷婷发布了新的文献求助20
4秒前
5秒前
Jane发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
典雅的太阳完成签到,获得积分10
6秒前
Jian完成签到,获得积分10
6秒前
天天快乐应助汀汀汀采纳,获得10
7秒前
鲤鱼问雁完成签到,获得积分10
7秒前
淡然珍完成签到,获得积分10
8秒前
万焕宏发布了新的文献求助10
8秒前
犹豫大侠完成签到,获得积分10
8秒前
动漫大师发布了新的文献求助20
9秒前
Grin发布了新的文献求助10
9秒前
9秒前
HQ完成签到,获得积分10
9秒前
meng完成签到,获得积分10
10秒前
zuolan发布了新的文献求助10
10秒前
hahage完成签到,获得积分20
10秒前
yx阿聪完成签到,获得积分10
10秒前
YMH完成签到,获得积分10
11秒前
独特的忆彤完成签到 ,获得积分10
11秒前
runli完成签到,获得积分20
11秒前
小燕子完成签到 ,获得积分10
11秒前
冷静的访天完成签到 ,获得积分10
12秒前
撒西不理完成签到,获得积分10
13秒前
物化有机会吗完成签到,获得积分10
14秒前
scq完成签到 ,获得积分10
14秒前
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733595
求助须知:如何正确求助?哪些是违规求助? 3277804
关于积分的说明 10004506
捐赠科研通 2993842
什么是DOI,文献DOI怎么找? 1642881
邀请新用户注册赠送积分活动 780655
科研通“疑难数据库(出版商)”最低求助积分说明 748950