Raman imaging to identify microplastics released from toothbrushes: algorithms and particle analysis

微塑料 环境科学 化学成像 拉曼光谱 遥感 生物系统 计算机科学 环境化学 光学 物理 化学 高光谱成像 地质学 生物
作者
Cheng Fang,Gopalan Saianand,Xian Zhang,Lei Xu,Junfeng Niu,Ravi Naidu
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:337: 122510-122510 被引量:3
标识
DOI:10.1016/j.envpol.2023.122510
摘要

Microplastics are small plastic fragments that are of increasing concern due to their potential impacts on the environment and human health. The source of microplastics is not completely clear and might originate in daily lives such as from toothbrushes. When toothbrushes are used to clean teeth, small plastic debris and fragments can be potentially released into mouths directly or environment indirectly. This study aims to examine the release of microplastics from toothbrushes, using Raman imaging to identify and visualise the plastic debris with an increased signal-noise ratio via hyper-spectrum analysis. Using algorithms to convert the hyper-spectrum to an image, the plastic can be distinguished from the co-formulated titanium oxide particles that are not uniformly distributed along the plastics. The non-uniform distribution can lead to the bias results if a single spectrum analysis is conducted at one position rather than imaging analysis to scan an area. The potential false image originating from the off-focal position for the confocal Raman is overcome using the terrain map to guide the Raman imaging. The imaging analysis balancing between the low magnification to capture the overview and the high magnification to test the details is also discussed. While the release amount of microplastics from the toothbrush is estimated at thousands daily with the expected variation, the results of this study have confirmed the release of microplastics in daily lives. The imaging analysis approach along with algorithm can help to identify the chemical elements of microplastics from the complex background, which can benefit the further research on microplastics towards risk assessment and remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彳亍发布了新的文献求助10
1秒前
1秒前
Joker完成签到,获得积分10
2秒前
2秒前
隐形曼青应助谢尔顿采纳,获得50
3秒前
无花果应助小哈采纳,获得10
3秒前
3秒前
三水发布了新的文献求助50
3秒前
hhchhcmxhf发布了新的文献求助10
3秒前
4秒前
打打应助文献下载神器采纳,获得10
4秒前
英姑应助wb采纳,获得10
5秒前
5秒前
缥缈怀绿完成签到 ,获得积分10
5秒前
果汁完成签到,获得积分10
6秒前
月光发布了新的文献求助10
6秒前
爬不起来发布了新的文献求助10
6秒前
6秒前
6秒前
美女发布了新的文献求助10
7秒前
7秒前
8秒前
三水完成签到,获得积分10
8秒前
8秒前
小鱼干发布了新的文献求助10
9秒前
太微北发布了新的文献求助10
9秒前
11秒前
zhangzhangzhang完成签到,获得积分10
12秒前
Gotyababy发布了新的文献求助10
12秒前
关尔匕禾页完成签到,获得积分10
12秒前
12秒前
13秒前
Owen应助沉默毛豆采纳,获得10
13秒前
13秒前
火星上誉发布了新的文献求助10
13秒前
Jasper应助LL采纳,获得10
14秒前
14秒前
精神小伙完成签到,获得积分10
14秒前
Amon发布了新的文献求助10
14秒前
英俊的铭应助zgd采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871