Analyzing and forecasting service demands using human mobility data: A two-stage predictive framework with decomposition and multivariate analysis

计算机科学 不可用 稳健性(进化) 水准点(测量) 数据挖掘 多元统计 时间序列 服务(商务) 机器学习 人工智能 生物化学 经济 经济 化学 工程类 可靠性工程 地理 基因 大地测量学
作者
Zhiyuan Wei,Sayanti Mukherjee
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121698-121698 被引量:3
标识
DOI:10.1016/j.eswa.2023.121698
摘要

Accurate service demand forecasts at critical facilities are fundamental for efficiently managing resources and promptly providing essential services to people and community. However, it has received little attention in the literature, mainly due to the unavailability of granular data and the lack of sophisticated forecasting methods. To address this gap, we provide a new perspective on sensing service demands at critical facilities leveraging fine-grained human mobility data, and propose a novel data-driven framework to forecast mobility patterns at the neighborhood level. Specifically, we develop a two-stage forecasting scheme to manage large-scale and complex human movement information. The first stage is to decompose the large-scale mobility data into spatial and temporal patterns, whereas the second stage is to model complex temporal dynamics using multivariate time series analysis. The proposed framework is implemented using real human mobility data obtained from mobile phone users. The results show that our model demonstrates the best predictive performance for varying forecast horizons, when compared to multiple benchmark methods including traditionally-used statistical and deep learning models. We also performed model robustness checks, showing that the proposed model is robust in making short-term and long-term forecasts. The proposed predictive framework could help businesses and local governments accurately forecast service demands for critical facilities for better allocating their resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tiantian完成签到,获得积分10
1秒前
1秒前
1秒前
Chenyy完成签到,获得积分10
2秒前
2秒前
2秒前
殷昭慧发布了新的文献求助10
3秒前
科研通AI2S应助典雅的书蝶采纳,获得10
3秒前
稳重的秋天完成签到,获得积分10
3秒前
风往北吹完成签到,获得积分10
3秒前
NexusExplorer应助Lorain采纳,获得10
3秒前
隐形曼青应助含蓄觅山采纳,获得10
4秒前
灵巧幻嫣完成签到,获得积分10
4秒前
leey完成签到,获得积分10
4秒前
杨飞发布了新的文献求助10
4秒前
01发布了新的文献求助10
5秒前
5秒前
hkh发布了新的文献求助10
5秒前
科研Yu完成签到,获得积分10
5秒前
夏汐发布了新的文献求助10
6秒前
bkagyin应助gzl采纳,获得10
6秒前
小梨子完成签到,获得积分20
7秒前
蓁蓁发布了新的文献求助10
7秒前
7秒前
7秒前
悄悄完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
万晓博完成签到,获得积分20
8秒前
maxcould完成签到,获得积分10
9秒前
星辰大海应助xuanye采纳,获得10
9秒前
weiwei完成签到 ,获得积分10
9秒前
9秒前
lwroche完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
2号发布了新的文献求助10
10秒前
小梨子发布了新的文献求助10
10秒前
10秒前
10秒前
惜_完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709862
求助须知:如何正确求助?哪些是违规求助? 5196870
关于积分的说明 15258745
捐赠科研通 4862555
什么是DOI,文献DOI怎么找? 2610161
邀请新用户注册赠送积分活动 1560499
关于科研通互助平台的介绍 1518208