重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Analyzing and forecasting service demands using human mobility data: A two-stage predictive framework with decomposition and multivariate analysis

计算机科学 不可用 稳健性(进化) 水准点(测量) 数据挖掘 多元统计 时间序列 服务(商务) 机器学习 人工智能 生物化学 经济 经济 化学 工程类 可靠性工程 地理 基因 大地测量学
作者
Zhiyuan Wei,Sayanti Mukherjee
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121698-121698 被引量:3
标识
DOI:10.1016/j.eswa.2023.121698
摘要

Accurate service demand forecasts at critical facilities are fundamental for efficiently managing resources and promptly providing essential services to people and community. However, it has received little attention in the literature, mainly due to the unavailability of granular data and the lack of sophisticated forecasting methods. To address this gap, we provide a new perspective on sensing service demands at critical facilities leveraging fine-grained human mobility data, and propose a novel data-driven framework to forecast mobility patterns at the neighborhood level. Specifically, we develop a two-stage forecasting scheme to manage large-scale and complex human movement information. The first stage is to decompose the large-scale mobility data into spatial and temporal patterns, whereas the second stage is to model complex temporal dynamics using multivariate time series analysis. The proposed framework is implemented using real human mobility data obtained from mobile phone users. The results show that our model demonstrates the best predictive performance for varying forecast horizons, when compared to multiple benchmark methods including traditionally-used statistical and deep learning models. We also performed model robustness checks, showing that the proposed model is robust in making short-term and long-term forecasts. The proposed predictive framework could help businesses and local governments accurately forecast service demands for critical facilities for better allocating their resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静白亦发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
幽默尔蓝发布了新的文献求助10
3秒前
Akim应助笑点低涟妖采纳,获得10
4秒前
5秒前
孤独千愁发布了新的文献求助10
5秒前
Owen应助Zo采纳,获得30
5秒前
5秒前
5秒前
6秒前
Lolo发布了新的文献求助10
6秒前
anling完成签到,获得积分10
6秒前
鱿鱼发布了新的文献求助20
6秒前
包容灵萱完成签到,获得积分10
6秒前
梓时发布了新的文献求助30
6秒前
yxli完成签到,获得积分10
7秒前
7秒前
8秒前
优美白凝关注了科研通微信公众号
8秒前
8秒前
天天快乐应助rong_liang采纳,获得20
8秒前
动听的蛟凤完成签到,获得积分10
8秒前
9秒前
9秒前
Hou发布了新的文献求助10
9秒前
xm完成签到 ,获得积分10
9秒前
zain发布了新的文献求助10
10秒前
xz发布了新的文献求助80
10秒前
lz完成签到,获得积分10
10秒前
草莓布丁应助Jeux采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
飘逸小凝发布了新的文献求助10
11秒前
邵邵完成签到,获得积分10
11秒前
12秒前
会飞的鱼完成签到,获得积分10
12秒前
四海发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654