In Pursuit of the Exceptional: Research Directions for Machine Learning in Chemical and Materials Science

化学空间 偶然性 工作流程 可解释性 鉴定(生物学) 任务(项目管理) 数据科学 人工智能 计算机科学 化学 纳米技术 空格(标点符号) 药物发现 系统工程 工程类 认识论 哲学 材料科学 操作系统 生物 数据库 植物 生物化学
作者
Joshua Schrier,Alexander J. Norquist,Tonio Buonassisi,Jakoah Brgoch
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (40): 21699-21716 被引量:47
标识
DOI:10.1021/jacs.3c04783
摘要

Exceptional molecules and materials with one or more extraordinary properties are both technologically valuable and fundamentally interesting, because they often involve new physical phenomena or new compositions that defy expectations. Historically, exceptionality has been achieved through serendipity, but recently, machine learning (ML) and automated experimentation have been widely proposed to accelerate target identification and synthesis planning. In this Perspective, we argue that the data-driven methods commonly used today are well-suited for optimization but not for the realization of new exceptional materials or molecules. Finding such outliers should be possible using ML, but only by shifting away from using traditional ML approaches that tweak the composition, crystal structure, or reaction pathway. We highlight case studies of high-Tc oxide superconductors and superhard materials to demonstrate the challenges of ML-guided discovery and discuss the limitations of automation for this task. We then provide six recommendations for the development of ML methods capable of exceptional materials discovery: (i) Avoid the tyranny of the middle and focus on extrema; (ii) When data are limited, qualitative predictions that provide direction are more valuable than interpolative accuracy; (iii) Sample what can be made and how to make it and defer optimization; (iv) Create room (and look) for the unexpected while pursuing your goal; (v) Try to fill-in-the-blanks of input and output space; (vi) Do not confuse human understanding with model interpretability. We conclude with a description of how these recommendations can be integrated into automated discovery workflows, which should enable the discovery of exceptional molecules and materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anubisi发布了新的文献求助10
刚刚
1秒前
润润完成签到 ,获得积分10
1秒前
安静的飞薇完成签到,获得积分10
1秒前
坦率的嫣娆完成签到,获得积分20
1秒前
Lxx完成签到,获得积分10
2秒前
彭于晏应助阿森采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
九九完成签到,获得积分10
4秒前
ZZ发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
皮皮灰熊完成签到,获得积分10
5秒前
无聊的依瑶完成签到,获得积分10
6秒前
完美世界应助black采纳,获得10
6秒前
weiwei发布了新的文献求助10
6秒前
李牧发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
8秒前
阿乾发布了新的文献求助10
9秒前
小白发布了新的文献求助10
9秒前
solitary1124完成签到,获得积分10
9秒前
秦可可发布了新的文献求助30
9秒前
你的左轮呢完成签到,获得积分10
9秒前
山花花完成签到,获得积分10
10秒前
10秒前
WQ发布了新的文献求助10
11秒前
文若369发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
11秒前
Ling发布了新的文献求助10
13秒前
yyy完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917