MAGSleepNet: Adaptively multi-scale temporal focused sleep staging model for multi-age groups

概化理论 计算机科学 人工智能 稳健性(进化) 睡眠(系统调用) 卷积神经网络 比例(比率) 深度学习 编码器 模式识别(心理学) 语音识别 机器学习 统计 数学 生物化学 化学 物理 量子力学 基因 操作系统
作者
Hangyu Zhu,Yao Guo,Yonglin Wu,Yiyuan Zhang,Ning Shen,Xu Yan,Laishuan Wang,Chen Chen,Wei Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122549-122549
标识
DOI:10.1016/j.eswa.2023.122549
摘要

Deep learning-based automatic sleep staging methods have been widely applied for sleep scoring and sleep diagnosis. However, most methods consider only a single temporal scale when dealing with sleep signals. Furthermore, these methods are limited to target only a single-age group or single dataset. In this paper, we propose a multi-scale temporally focused sleep staging model, MAGSleepNet, which can be used for multi-age groups simultaneously. MAGSleepNet consists of (1) a group age classification (GAC) module that can offer a preliminary screening on epidemic estimation of multiple age, (2) a dimensional expansion module (DEM) that can expand the dimension of the input signals, (3) a sequential multi-scale convolutional neural network (SMCNN) that extracts multi-scale features and short-time temporal information, and (4) sequence temporal encoder (STE) that extracts sequential temporal information. In addition, two auxiliary tasks are used to complement the short-time temporal information and to reassign the probabilities of different age groups to enhance the model robustness, respectively. The MAGSleepNet is evaluated in adult, child and infant, tested on MASS, CHAT, and CHFU datasets with accruacy of 86.7%, 80.1% and 66.5%, outperforming the state-of-the-art methods. Based on the excellent performance of the proposed method, it is expected to pave the way for automatic sleep staging methods with strong generalizability for multiple age groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Xiaoyan采纳,获得10
1秒前
岑晓冰完成签到 ,获得积分10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
zcl应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
3秒前
3秒前
星辰大海应助hudiefeifei306采纳,获得10
3秒前
pcr163应助科研通管家采纳,获得100
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
充电宝应助难过的翠桃采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
行毅文发布了新的文献求助10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
浪子应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
wangyamei发布了新的文献求助10
4秒前
4秒前
暮色给暮色的求助进行了留言
4秒前
dachen97发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4947452
求助须知:如何正确求助?哪些是违规求助? 4211229
关于积分的说明 13093565
捐赠科研通 3992434
什么是DOI,文献DOI怎么找? 2185471
邀请新用户注册赠送积分活动 1200855
关于科研通互助平台的介绍 1114351