人工智能
计算机科学
跟踪(教育)
投影(关系代数)
计算机视觉
分割
放射治疗
锥束ct
深度学习
职位(财务)
放射治疗计划
影像引导放射治疗
定制
肺肿瘤
过程(计算)
层析合成
医学影像学
放射科
计算机断层摄影术
医学
肺癌
癌症
算法
心理学
教育学
财务
内科学
经济
操作系统
法学
乳腺癌
政治学
乳腺摄影术
作者
Jingjing Dai,Guoya Dong,Chulong Zhang,Wenfeng He,Lin Liu,Tangsheng Wang,Yuming Jiang,Wei Zhao,Xiang Zhao,Yaoqin Xie,Xiaokun Liang
标识
DOI:10.1016/j.media.2023.102998
摘要
Radiotherapy serves as a pivotal treatment modality for malignant tumors. However, the accuracy of radiotherapy is significantly compromised due to respiratory-induced fluctuations in the size, shape, and position of the tumor. To address this challenge, we introduce a deep learning-anchored, volumetric tumor tracking methodology that employs single-angle X-ray projection images. This process involves aligning the intraoperative two-dimensional (2D) X-ray images with the pre-treatment three-dimensional (3D) planning Computed Tomography (CT) scans, enabling the extraction of the 3D tumor position and segmentation. Prior to therapy, a bespoke patient-specific tumor tracking model is formulated, leveraging a hybrid data augmentation, style correction, and registration network to create a mapping from single-angle 2D X-ray images to the corresponding 3D tumors. During the treatment phase, real-time X-ray images are fed into the trained model, producing the respective 3D tumor positioning. Rigorous validation conducted on actual patient lung data and lung phantoms attests to the high localization precision of our method at lowered radiation doses, thus heralding promising strides towards enhancing the precision of radiotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI