Predicting discrete-time bifurcations with deep learning

分叉 深度学习 人工智能 计算机科学 分类器(UML) 倍周期分岔 离散时间和连续时间 分岔理论 预警系统 机器学习 模式识别(心理学) 非线性系统 数学 物理 统计 电信 量子力学
作者
Thomas M. Bury,Daniel Dylewsky,Chris T. Bauch,Madhur Anand,Leon Glass,Alvin Shrier,Gil Bub
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:14 (1) 被引量:12
标识
DOI:10.1038/s41467-023-42020-z
摘要

Many natural and man-made systems are prone to critical transitions-abrupt and potentially devastating changes in dynamics. Deep learning classifiers can provide an early warning signal for critical transitions by learning generic features of bifurcations from large simulated training data sets. So far, classifiers have only been trained to predict continuous-time bifurcations, ignoring rich dynamics unique to discrete-time bifurcations. Here, we train a deep learning classifier to provide an early warning signal for the five local discrete-time bifurcations of codimension-one. We test the classifier on simulation data from discrete-time models used in physiology, economics and ecology, as well as experimental data of spontaneously beating chick-heart aggregates that undergo a period-doubling bifurcation. The classifier shows higher sensitivity and specificity than commonly used early warning signals under a wide range of noise intensities and rates of approach to the bifurcation. It also predicts the correct bifurcation in most cases, with particularly high accuracy for the period-doubling, Neimark-Sacker and fold bifurcations. Deep learning as a tool for bifurcation prediction is still in its nascence and has the potential to transform the way we monitor systems for critical transitions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抹茶麻薯巧克力完成签到,获得积分10
2秒前
4秒前
啦啦啦完成签到,获得积分10
6秒前
6秒前
小马甲应助友好真采纳,获得10
6秒前
ding应助加快步伐采纳,获得10
7秒前
meng17应助Vicky采纳,获得20
8秒前
8秒前
Owen应助标致耷采纳,获得10
9秒前
9秒前
10秒前
dpk发布了新的文献求助10
10秒前
July发布了新的文献求助10
11秒前
852应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
11秒前
情怀应助科研通管家采纳,获得10
11秒前
Allonz发布了新的文献求助10
12秒前
yy完成签到,获得积分10
13秒前
aaaa完成签到,获得积分10
14秒前
14秒前
in2you发布了新的文献求助10
14秒前
14秒前
guojingjing发布了新的文献求助10
15秒前
青柠发布了新的文献求助10
16秒前
17秒前
顾惊蛰发布了新的文献求助10
18秒前
加快步伐发布了新的文献求助10
20秒前
addd发布了新的文献求助10
20秒前
Allonz完成签到,获得积分10
21秒前
22秒前
margine完成签到,获得积分10
22秒前
Pie发布了新的文献求助10
22秒前
UGK发布了新的文献求助30
27秒前
yangzai发布了新的文献求助10
28秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309