TGF-β score based on silico analysis can robustly predict prognosis and immunological characteristics in lower-grade glioma: the evidence from multicenter studies

生物信息学 胶质瘤 肿瘤科 内科学 医学 人工智能 计算机科学 生物 癌症研究 遗传学 基因
作者
Weizhong Zhang,Zhiyuan Yan,Feng Zhao,Qinggui He,Hongbo Xu
出处
期刊:Recent Patents on Anti-cancer Drug Discovery [Bentham Science]
卷期号:19 (5): 610-621
标识
DOI:10.2174/1574892819666230915143632
摘要

Nowadays, mounting evidence shows that variations in TGF-β signaling pathway-related components influence tumor development. Current research has patents describing the use of anti-TGF-β antibodies and checkpoint inhibitors for the treatment of proliferative diseases. Importantly, TGF-β signaling pathway is significant for lower-grade glioma (LGG) to evade host immunity. Loss of particular tumor antigens and shutdown of professional antigen-presenting cell activity may render the anti-tumor response ineffective in LGG patients. However, the prognostic significance of TGF-β related genes in LGG is still unknown.We collected RNA-seq data from the GTEx database (normal cortical tissues), the Cancer Genome Atlas database (TCGA-LGG), and the Chinese Glioma Genome Atlas database (CGGA-693 and CGGA-325) for conducting our investigation.In addition, previous publications were explored for the 223 regulators of the TGF-β signaling pathway, and 30 regulators with abnormal expression in TCGA and GTEx database were identified. In order to identify hub prognostic regulators, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis were used to screen from differentially expressed genes (DEGs). On the basis of 11 genes from LASSO-Cox regression analysis (NEDD8, CHRD, TGFBR1, TP53, BMP2, LRRC32, THBS2, ID1, NOG, TNF, and SERPINE1), TGF-β score was calculated. Multiple statistical approaches verified the predictive value of the TGF-β score for the training cohort and two external validation cohorts. Considering the importance of the TGF-β signaling pathway in immune regulation, we evaluated the prediction of the TGF-β score for immunological characteristics and the possible application of the immunotherapeutic response using six algorithms (TIMER, CIBERSORT, QUANTISEQ, MCP-counter, XCELL and EPIC) and three immunotherapy cohorts (GSE78820, Imvigor-210 and PRJEB23709). Notably, we compared our risk signature with the signature in ten publications in the meta-cohort (TCGA-LGG, CGGA-693 and CGGA-325), and the TGF-β score had the best predictive efficiency (C-index =0.812).In conclusion, our findings suggest that TGF-β signaling pathway-related signatures are prognostic biomarkers in LGG and provide a novel tool for tumor microenvironment (TME) assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbrfu发布了新的文献求助10
2秒前
2秒前
爆米花应助aaaaaa采纳,获得10
2秒前
4秒前
缓慢思枫发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
不倦应助羊六一采纳,获得10
9秒前
虚拟的数据线完成签到,获得积分10
9秒前
9秒前
10秒前
受伤问凝完成签到 ,获得积分10
10秒前
帆帆发布了新的文献求助10
11秒前
kannar完成签到,获得积分10
12秒前
13秒前
红莲墨生发布了新的文献求助10
14秒前
传奇3应助bbrfu采纳,获得10
15秒前
15秒前
花海发布了新的文献求助10
15秒前
七叶树完成签到,获得积分10
15秒前
香蕉觅云应助AnjeXi采纳,获得10
15秒前
吴青完成签到,获得积分10
16秒前
风中少年发布了新的文献求助10
17秒前
TANG发布了新的文献求助10
18秒前
JY完成签到,获得积分20
18秒前
19秒前
19秒前
胡小二关注了科研通微信公众号
19秒前
stephen_wang完成签到,获得积分10
19秒前
田様应助sssym采纳,获得10
20秒前
bbrfu发布了新的文献求助10
22秒前
22秒前
乐乐应助JY采纳,获得10
22秒前
22秒前
宋宋发布了新的文献求助10
27秒前
28秒前
DQQ发布了新的文献求助10
30秒前
科研通AI5应助初夏采纳,获得10
31秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3573869
求助须知:如何正确求助?哪些是违规求助? 3143673
关于积分的说明 9453528
捐赠科研通 2845319
什么是DOI,文献DOI怎么找? 1564178
邀请新用户注册赠送积分活动 732133
科研通“疑难数据库(出版商)”最低求助积分说明 718929