亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review

人工智能 自然语言处理 计算机科学 机器学习 非结构化数据 情报检索 数据挖掘 大数据
作者
Jin‐ah Sim,Xiaolei Huang,Madeline R. Horan,Christopher M. Stewart,Leslie L. Robison,Melissa M. Hudson,Justin N. Baker,I‐Chan Huang
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:146: 102701-102701 被引量:22
标识
DOI:10.1016/j.artmed.2023.102701
摘要

Natural language processing (NLP) combined with machine learning (ML) techniques are increasingly used to process unstructured/free-text patient-reported outcome (PRO) data available in electronic health records (EHRs). This systematic review summarizes the literature reporting NLP/ML systems/toolkits for analyzing PROs in clinical narratives of EHRs and discusses the future directions for the application of this modality in clinical care.We searched PubMed, Scopus, and Web of Science for studies written in English between 1/1/2000 and 12/31/2020. Seventy-nine studies meeting the eligibility criteria were included. We abstracted and summarized information related to the study purpose, patient population, type/source/amount of unstructured PRO data, linguistic features, and NLP systems/toolkits for processing unstructured PROs in EHRs.Most of the studies used NLP/ML techniques to extract PROs from clinical narratives (n = 74) and mapped the extracted PROs into specific PRO domains for phenotyping or clustering purposes (n = 26). Some studies used NLP/ML to process PROs for predicting disease progression or onset of adverse events (n = 22) or developing/validating NLP/ML pipelines for analyzing unstructured PROs (n = 19). Studies used different linguistic features, including lexical, syntactic, semantic, and contextual features, to process unstructured PROs. Among the 25 NLP systems/toolkits we identified, 15 used rule-based NLP, 6 used hybrid NLP, and 4 used non-neural ML algorithms embedded in NLP.This study supports the potential utility of different NLP/ML techniques in processing unstructured PROs available in EHRs for clinical care. Though using annotation rules for NLP/ML to analyze unstructured PROs is dominant, deploying novel neural ML-based methods is warranted.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大完成签到 ,获得积分10
刚刚
共享精神应助尘默采纳,获得10
1秒前
充满怪兽的世界完成签到,获得积分0
16秒前
24秒前
大个应助zhang采纳,获得10
28秒前
zyw发布了新的文献求助10
31秒前
ChenXY发布了新的文献求助10
39秒前
小亮完成签到 ,获得积分10
51秒前
ChenXY完成签到,获得积分10
56秒前
1分钟前
爆米花应助小路采纳,获得20
1分钟前
尘默发布了新的文献求助10
1分钟前
脑洞疼应助尘默采纳,获得10
1分钟前
orixero应助尘路遐远采纳,获得10
1分钟前
1分钟前
小路发布了新的文献求助20
1分钟前
1分钟前
zhang发布了新的文献求助10
1分钟前
小路完成签到,获得积分10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
2分钟前
尘默发布了新的文献求助10
2分钟前
科目三应助尘默采纳,获得10
2分钟前
汉堡包应助追寻沁采纳,获得10
2分钟前
2分钟前
追寻沁发布了新的文献求助10
2分钟前
Niki完成签到,获得积分10
3分钟前
Sherry完成签到 ,获得积分10
3分钟前
风中青亦完成签到 ,获得积分10
3分钟前
3分钟前
尘默发布了新的文献求助10
4分钟前
一隅完成签到,获得积分10
4分钟前
隐形曼青应助尘默采纳,获得10
4分钟前
可爱的函函应助zyw采纳,获得10
4分钟前
万能图书馆应助sansan采纳,获得10
4分钟前
4分钟前
zyw发布了新的文献求助10
4分钟前
4分钟前
sansan发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875804
求助须知:如何正确求助?哪些是违规求助? 6521563
关于积分的说明 15677701
捐赠科研通 4993929
什么是DOI,文献DOI怎么找? 2691687
邀请新用户注册赠送积分活动 1633875
关于科研通互助平台的介绍 1591541