Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review

人工智能 自然语言处理 计算机科学 机器学习 非结构化数据 情报检索 数据挖掘 大数据
作者
Jin‐ah Sim,Xiaolei Huang,Madeline R. Horan,Christopher M. Stewart,Leslie L. Robison,Melissa M. Hudson,Justin N. Baker,I‐Chan Huang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:146: 102701-102701 被引量:22
标识
DOI:10.1016/j.artmed.2023.102701
摘要

Natural language processing (NLP) combined with machine learning (ML) techniques are increasingly used to process unstructured/free-text patient-reported outcome (PRO) data available in electronic health records (EHRs). This systematic review summarizes the literature reporting NLP/ML systems/toolkits for analyzing PROs in clinical narratives of EHRs and discusses the future directions for the application of this modality in clinical care.We searched PubMed, Scopus, and Web of Science for studies written in English between 1/1/2000 and 12/31/2020. Seventy-nine studies meeting the eligibility criteria were included. We abstracted and summarized information related to the study purpose, patient population, type/source/amount of unstructured PRO data, linguistic features, and NLP systems/toolkits for processing unstructured PROs in EHRs.Most of the studies used NLP/ML techniques to extract PROs from clinical narratives (n = 74) and mapped the extracted PROs into specific PRO domains for phenotyping or clustering purposes (n = 26). Some studies used NLP/ML to process PROs for predicting disease progression or onset of adverse events (n = 22) or developing/validating NLP/ML pipelines for analyzing unstructured PROs (n = 19). Studies used different linguistic features, including lexical, syntactic, semantic, and contextual features, to process unstructured PROs. Among the 25 NLP systems/toolkits we identified, 15 used rule-based NLP, 6 used hybrid NLP, and 4 used non-neural ML algorithms embedded in NLP.This study supports the potential utility of different NLP/ML techniques in processing unstructured PROs available in EHRs for clinical care. Though using annotation rules for NLP/ML to analyze unstructured PROs is dominant, deploying novel neural ML-based methods is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jeff完成签到,获得积分10
1秒前
59关闭了59文献求助
1秒前
可耐的嫣娆完成签到,获得积分10
5秒前
无花果应助hzz采纳,获得10
5秒前
音悦台发布了新的文献求助30
6秒前
9秒前
threewei完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
清欢完成签到 ,获得积分10
11秒前
12秒前
xixun关注了科研通微信公众号
12秒前
13秒前
13秒前
解语花发布了新的文献求助50
14秒前
啊啊啊完成签到,获得积分10
15秒前
小琛完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
19秒前
19秒前
36038138完成签到 ,获得积分10
21秒前
XRenaissance发布了新的文献求助10
22秒前
搬砖发布了新的文献求助10
23秒前
23秒前
酱紫完成签到 ,获得积分10
23秒前
淡定妙海发布了新的文献求助10
23秒前
NexusExplorer应助盖世汤圆采纳,获得20
24秒前
24秒前
Azyyyy完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助30
25秒前
25秒前
陈昇发布了新的文献求助10
25秒前
cccf发布了新的文献求助100
26秒前
27秒前
冯俊驰发布了新的文献求助10
28秒前
海马成长痛完成签到,获得积分10
28秒前
丘比特应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408