Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review

人工智能 自然语言处理 计算机科学 机器学习 非结构化数据 情报检索 数据挖掘 大数据
作者
Jin‐ah Sim,Xiaolei Huang,Madeline R. Horan,Christopher M. Stewart,Leslie L. Robison,Melissa M. Hudson,Justin N. Baker,I‐Chan Huang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:146: 102701-102701 被引量:22
标识
DOI:10.1016/j.artmed.2023.102701
摘要

Natural language processing (NLP) combined with machine learning (ML) techniques are increasingly used to process unstructured/free-text patient-reported outcome (PRO) data available in electronic health records (EHRs). This systematic review summarizes the literature reporting NLP/ML systems/toolkits for analyzing PROs in clinical narratives of EHRs and discusses the future directions for the application of this modality in clinical care.We searched PubMed, Scopus, and Web of Science for studies written in English between 1/1/2000 and 12/31/2020. Seventy-nine studies meeting the eligibility criteria were included. We abstracted and summarized information related to the study purpose, patient population, type/source/amount of unstructured PRO data, linguistic features, and NLP systems/toolkits for processing unstructured PROs in EHRs.Most of the studies used NLP/ML techniques to extract PROs from clinical narratives (n = 74) and mapped the extracted PROs into specific PRO domains for phenotyping or clustering purposes (n = 26). Some studies used NLP/ML to process PROs for predicting disease progression or onset of adverse events (n = 22) or developing/validating NLP/ML pipelines for analyzing unstructured PROs (n = 19). Studies used different linguistic features, including lexical, syntactic, semantic, and contextual features, to process unstructured PROs. Among the 25 NLP systems/toolkits we identified, 15 used rule-based NLP, 6 used hybrid NLP, and 4 used non-neural ML algorithms embedded in NLP.This study supports the potential utility of different NLP/ML techniques in processing unstructured PROs available in EHRs for clinical care. Though using annotation rules for NLP/ML to analyze unstructured PROs is dominant, deploying novel neural ML-based methods is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzl完成签到,获得积分10
刚刚
zou发布了新的文献求助10
刚刚
黄文怡发布了新的文献求助10
1秒前
1秒前
1秒前
JMrider完成签到,获得积分10
1秒前
顾矜应助张静枝采纳,获得10
1秒前
谨慎蝴蝶发布了新的文献求助10
2秒前
lwroche发布了新的文献求助10
2秒前
2秒前
2秒前
Tianxu Li完成签到,获得积分20
2秒前
2秒前
Akim应助多肉采纳,获得30
3秒前
科目三应助稳重的紫易采纳,获得10
3秒前
尽快毕业完成签到 ,获得积分10
3秒前
充电宝应助饼藏采纳,获得10
4秒前
xyhua925完成签到,获得积分10
4秒前
5秒前
Jason发布了新的文献求助10
5秒前
222发布了新的文献求助10
6秒前
快乐的打羽毛球完成签到 ,获得积分10
7秒前
乐乐应助朴素的天蓝采纳,获得10
7秒前
叮叮叮铛完成签到,获得积分10
7秒前
苏silence发布了新的文献求助10
7秒前
8秒前
8秒前
Rondab应助桃李春风一杯酒采纳,获得10
9秒前
9秒前
暖阳完成签到 ,获得积分10
11秒前
颜代曼完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
HSY驳回了桐桐应助
13秒前
xuexi发布了新的文献求助10
14秒前
666应助渊思采纳,获得10
14秒前
14秒前
斑马兽完成签到,获得积分10
14秒前
甜甜的满天完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550