Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review

人工智能 自然语言处理 计算机科学 机器学习 非结构化数据 情报检索 F1得分 数据挖掘 大数据
作者
Jin‐ah Sim,Xiaolei Huang,Madeline R. Horan,Christopher M. Stewart,Leslie L. Robison,Melissa M. Hudson,Justin N. Baker,I‐Chan Huang
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:146: 102701-102701 被引量:9
标识
DOI:10.1016/j.artmed.2023.102701
摘要

Natural language processing (NLP) combined with machine learning (ML) techniques are increasingly used to process unstructured/free-text patient-reported outcome (PRO) data available in electronic health records (EHRs). This systematic review summarizes the literature reporting NLP/ML systems/toolkits for analyzing PROs in clinical narratives of EHRs and discusses the future directions for the application of this modality in clinical care.We searched PubMed, Scopus, and Web of Science for studies written in English between 1/1/2000 and 12/31/2020. Seventy-nine studies meeting the eligibility criteria were included. We abstracted and summarized information related to the study purpose, patient population, type/source/amount of unstructured PRO data, linguistic features, and NLP systems/toolkits for processing unstructured PROs in EHRs.Most of the studies used NLP/ML techniques to extract PROs from clinical narratives (n = 74) and mapped the extracted PROs into specific PRO domains for phenotyping or clustering purposes (n = 26). Some studies used NLP/ML to process PROs for predicting disease progression or onset of adverse events (n = 22) or developing/validating NLP/ML pipelines for analyzing unstructured PROs (n = 19). Studies used different linguistic features, including lexical, syntactic, semantic, and contextual features, to process unstructured PROs. Among the 25 NLP systems/toolkits we identified, 15 used rule-based NLP, 6 used hybrid NLP, and 4 used non-neural ML algorithms embedded in NLP.This study supports the potential utility of different NLP/ML techniques in processing unstructured PROs available in EHRs for clinical care. Though using annotation rules for NLP/ML to analyze unstructured PROs is dominant, deploying novel neural ML-based methods is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助蓝胖子采纳,获得10
1秒前
鳗鱼思天完成签到,获得积分10
2秒前
3秒前
5秒前
Tycoon完成签到,获得积分10
6秒前
ccccc完成签到,获得积分10
6秒前
6秒前
皮皮完成签到 ,获得积分10
9秒前
英俊的铭应助悦耳的真采纳,获得10
10秒前
11秒前
上官若男应助刘晓倩采纳,获得10
11秒前
11秒前
12秒前
Chuyu发布了新的文献求助10
12秒前
13秒前
诸葛朝雪完成签到,获得积分10
14秒前
杨航完成签到,获得积分10
15秒前
nater4ver发布了新的文献求助10
16秒前
蓝胖子发布了新的文献求助10
16秒前
怡然发卡发布了新的文献求助10
17秒前
jhhh发布了新的文献求助10
17秒前
杨航发布了新的文献求助10
18秒前
20秒前
Chuyu完成签到,获得积分10
22秒前
可乐发布了新的文献求助10
25秒前
孙伟伟完成签到,获得积分10
25秒前
Tycoon发布了新的文献求助10
28秒前
28秒前
三十三发布了新的文献求助20
29秒前
花生壳完成签到,获得积分20
31秒前
master完成签到,获得积分10
32秒前
asd关闭了asd文献求助
33秒前
活泼之云发布了新的文献求助10
33秒前
34秒前
35秒前
星辰大海应助许大脚采纳,获得10
35秒前
可乐完成签到,获得积分10
37秒前
等等完成签到,获得积分10
37秒前
Ray发布了新的文献求助10
38秒前
唐牛宝完成签到,获得积分10
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161864
求助须知:如何正确求助?哪些是违规求助? 2813088
关于积分的说明 7898593
捐赠科研通 2472111
什么是DOI,文献DOI怎么找? 1316332
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129