Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review

人工智能 自然语言处理 计算机科学 机器学习 非结构化数据 情报检索 数据挖掘 大数据
作者
Jin‐ah Sim,Xiaolei Huang,Madeline R. Horan,Christopher M. Stewart,Leslie L. Robison,Melissa M. Hudson,Justin N. Baker,I‐Chan Huang
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:146: 102701-102701 被引量:22
标识
DOI:10.1016/j.artmed.2023.102701
摘要

Natural language processing (NLP) combined with machine learning (ML) techniques are increasingly used to process unstructured/free-text patient-reported outcome (PRO) data available in electronic health records (EHRs). This systematic review summarizes the literature reporting NLP/ML systems/toolkits for analyzing PROs in clinical narratives of EHRs and discusses the future directions for the application of this modality in clinical care.We searched PubMed, Scopus, and Web of Science for studies written in English between 1/1/2000 and 12/31/2020. Seventy-nine studies meeting the eligibility criteria were included. We abstracted and summarized information related to the study purpose, patient population, type/source/amount of unstructured PRO data, linguistic features, and NLP systems/toolkits for processing unstructured PROs in EHRs.Most of the studies used NLP/ML techniques to extract PROs from clinical narratives (n = 74) and mapped the extracted PROs into specific PRO domains for phenotyping or clustering purposes (n = 26). Some studies used NLP/ML to process PROs for predicting disease progression or onset of adverse events (n = 22) or developing/validating NLP/ML pipelines for analyzing unstructured PROs (n = 19). Studies used different linguistic features, including lexical, syntactic, semantic, and contextual features, to process unstructured PROs. Among the 25 NLP systems/toolkits we identified, 15 used rule-based NLP, 6 used hybrid NLP, and 4 used non-neural ML algorithms embedded in NLP.This study supports the potential utility of different NLP/ML techniques in processing unstructured PROs available in EHRs for clinical care. Though using annotation rules for NLP/ML to analyze unstructured PROs is dominant, deploying novel neural ML-based methods is warranted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yongjiang应助熊猫小肿采纳,获得10
1秒前
洋洋完成签到,获得积分10
1秒前
何香稳发布了新的文献求助10
1秒前
2秒前
HightLight发布了新的文献求助10
2秒前
炙热尔烟发布了新的文献求助10
2秒前
3秒前
3秒前
copyj发布了新的文献求助10
3秒前
3秒前
5秒前
lurongjun发布了新的文献求助10
5秒前
Janisa发布了新的文献求助10
5秒前
6秒前
小涛涛发布了新的文献求助10
7秒前
丸橙完成签到,获得积分10
7秒前
weixiao发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
丸橙发布了新的文献求助10
10秒前
qqqq发布了新的文献求助10
10秒前
10秒前
dameng完成签到 ,获得积分10
10秒前
小八统治世界完成签到,获得积分10
11秒前
愉快无施发布了新的文献求助30
11秒前
11秒前
12秒前
13秒前
科研通AI6应助Kevin63采纳,获得10
14秒前
k_1发布了新的文献求助10
14秒前
饼干吃土豆关注了科研通微信公众号
14秒前
15秒前
dong发布了新的文献求助10
16秒前
方法发布了新的文献求助10
17秒前
破天富贵玩命追我完成签到 ,获得积分10
17秒前
赘婿应助门小楠采纳,获得10
17秒前
科研通AI6应助Janisa采纳,获得30
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577556
求助须知:如何正确求助?哪些是违规求助? 4662649
关于积分的说明 14742832
捐赠科研通 4603346
什么是DOI,文献DOI怎么找? 2526283
邀请新用户注册赠送积分活动 1496084
关于科研通互助平台的介绍 1465546