Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review

人工智能 自然语言处理 计算机科学 机器学习 非结构化数据 情报检索 数据挖掘 大数据
作者
Jin‐ah Sim,Xiaolei Huang,Madeline R. Horan,Christopher M. Stewart,Leslie L. Robison,Melissa M. Hudson,Justin N. Baker,I‐Chan Huang
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:146: 102701-102701 被引量:22
标识
DOI:10.1016/j.artmed.2023.102701
摘要

Natural language processing (NLP) combined with machine learning (ML) techniques are increasingly used to process unstructured/free-text patient-reported outcome (PRO) data available in electronic health records (EHRs). This systematic review summarizes the literature reporting NLP/ML systems/toolkits for analyzing PROs in clinical narratives of EHRs and discusses the future directions for the application of this modality in clinical care.We searched PubMed, Scopus, and Web of Science for studies written in English between 1/1/2000 and 12/31/2020. Seventy-nine studies meeting the eligibility criteria were included. We abstracted and summarized information related to the study purpose, patient population, type/source/amount of unstructured PRO data, linguistic features, and NLP systems/toolkits for processing unstructured PROs in EHRs.Most of the studies used NLP/ML techniques to extract PROs from clinical narratives (n = 74) and mapped the extracted PROs into specific PRO domains for phenotyping or clustering purposes (n = 26). Some studies used NLP/ML to process PROs for predicting disease progression or onset of adverse events (n = 22) or developing/validating NLP/ML pipelines for analyzing unstructured PROs (n = 19). Studies used different linguistic features, including lexical, syntactic, semantic, and contextual features, to process unstructured PROs. Among the 25 NLP systems/toolkits we identified, 15 used rule-based NLP, 6 used hybrid NLP, and 4 used non-neural ML algorithms embedded in NLP.This study supports the potential utility of different NLP/ML techniques in processing unstructured PROs available in EHRs for clinical care. Though using annotation rules for NLP/ML to analyze unstructured PROs is dominant, deploying novel neural ML-based methods is warranted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xh93完成签到,获得积分20
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
专注的棉花糖完成签到,获得积分10
1秒前
蓝天应助科研通管家采纳,获得10
2秒前
Mic应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Return应助科研通管家采纳,获得10
2秒前
Mic应助科研通管家采纳,获得10
2秒前
纯情的浩然完成签到,获得积分10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Mic应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
机智发布了新的文献求助10
3秒前
Mic应助科研通管家采纳,获得10
3秒前
勤劳的不二完成签到,获得积分10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
3秒前
可爱的函函应助卡卡卡采纳,获得10
3秒前
Mic应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Return应助科研通管家采纳,获得10
3秒前
3秒前
李里哩发布了新的文献求助10
3秒前
3秒前
Mic应助科研通管家采纳,获得10
3秒前
3秒前
Mr.egg完成签到,获得积分10
3秒前
3秒前
4秒前
Return应助科研通管家采纳,获得10
4秒前
蓝天应助科研通管家采纳,获得10
4秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167