Parametric Modeling and Deep Learning for Enhancing Pain Assessment in Postanesthesia

人工智能 卷积神经网络 深度学习 计算机科学 人口 光谱图 机器学习 非参数统计 模式识别(心理学) 鉴定(生物学) 数学 统计 医学 植物 生物 环境卫生
作者
Mihaela Ghita,Isabela Birs,Dana Copoţ,Cristina I. Muresan,Martine Neckebroek,Clara M. Ionescu
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (10): 2991-3002 被引量:7
标识
DOI:10.1109/tbme.2023.3274541
摘要

The problem of reliable and widely accepted measures of pain is still open. It follows the objective of this work as pain estimation through post-surgical trauma modeling and classification, to increase the needed reliability compared to measurements only.This article proposes (i) a recursive identification method to obtain the frequency response and parameterization using fractional-order impedance models (FOIM), and (ii) deep learning with convolutional neural networks (CNN) classification algorithms using time-frequency data and spectrograms. The skin impedance measurements were conducted on 12 patients throughout the postanesthesia care in a proof-of-concept clinical trial. Recursive least-squares system identification was performed using a genetic algorithm for initializing the parametric model. The online parameter estimates were compared to the self-reported level by the Numeric Rating Scale (NRS) for analysis and validation of the results. Alternatively, the inputs to CNNs were the spectrograms extracted from the time-frequency dataset, being pre-labeled in four intensities classes of pain during offline and online training with the NRS.The tendency of nociception could be predicted by monitoring the changes in the FOIM parameters' values or by retraining online the network. Moreover, the tissue heterogeneity, assumed during nociception, could follow the NRS trends. The online predictions of retrained CNN have more specific trends to NRS than pain predicted by the offline population-trained CNN.We propose tailored online identification and deep learning for artefact corrupted environment. The results indicate estimations with the potential to avoid over-dosing due to the objectivity of the information.Models and artificial intelligence (AI) allow objective and personalized nociception-antinociception prediction in the patient safety era for the design and evaluation of closed-loop analgesia controllers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Bmo完成签到,获得积分10
刚刚
1秒前
领导范儿应助科研小黑采纳,获得10
1秒前
天外飞聪发布了新的文献求助10
1秒前
胡一天完成签到,获得积分10
1秒前
2秒前
默默地读文献应助七一桉采纳,获得20
2秒前
hoshi1018完成签到,获得积分10
2秒前
LSS发布了新的文献求助200
3秒前
Bmo发布了新的文献求助10
4秒前
呆萌擎宇完成签到,获得积分10
4秒前
4秒前
4秒前
zpphlw发布了新的文献求助10
5秒前
研友_VZG7GZ应助dyfsj采纳,获得10
5秒前
oi发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
Elaine完成签到 ,获得积分10
8秒前
肥四发布了新的文献求助10
9秒前
Ir发布了新的文献求助10
10秒前
兰晋彤发布了新的文献求助10
10秒前
10秒前
领导范儿应助十六采纳,获得10
10秒前
11秒前
12秒前
研友_nEWrN8完成签到,获得积分10
12秒前
D_D完成签到,获得积分10
13秒前
luo发布了新的文献求助10
15秒前
飞云发布了新的文献求助10
16秒前
书双完成签到,获得积分10
17秒前
茶色小鸡发布了新的文献求助10
17秒前
17秒前
17秒前
兰晋彤完成签到,获得积分20
17秒前
优雅的纸鹤完成签到,获得积分10
18秒前
十六完成签到,获得积分20
19秒前
txy完成签到,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672573
求助须知:如何正确求助?哪些是违规求助? 3228837
关于积分的说明 9782155
捐赠科研通 2939284
什么是DOI,文献DOI怎么找? 1610727
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736198