Spatio-temporal interactive graph convolution network for vehicle trajectory prediction

计算机科学 弹道 图形 卷积神经网络 推论 维数(图论) 人工智能 数据挖掘 自相关 核(代数) 空间分析 机器学习 理论计算机科学 数学 统计 组合数学 物理 纯数学 天文
作者
Guojiang Shen,Pengfei Li,Zhiyu Chen,Yaowen Yang,Xiangjie Kong
出处
期刊:Internet of things [Elsevier BV]
卷期号:24: 100935-100935 被引量:4
标识
DOI:10.1016/j.iot.2023.100935
摘要

Vehicle trajectory prediction is crucial in achieving safe and reliable autonomous driving decision-making. The accuracy of the prediction is affected by many different factors, such as the integrity and efficiency of vehicle-to-vehicle (V2V) data transfer, the complex environmental factors of the surrounding roads and the perception range of vehicle sensors. However, most existing methods cannot capture the dynamic interactive information of vehicles at different time steps. In this paper, we propose a Spatio-Temporal Interactive Graph Convolutional Network (STI-GCN) that predicts future trajectories by acquiring spatiotemporal features of vehicles. In the spatial dimension, we construct a kernel function based on spatial autocorrelation and use it as prior knowledge to describe the degree of mutual influence between vehicles in real traffic scenarios. In addition, the Gated Recurrent Unit (GRU) is used to dynamically capture the spatial features of vehicles to solve the dynamic making graph problem of vehicles in the real traffic scene. In the temporal dimension, we use a Convolutional Neural Network (CNN) to extract the temporal feature in the historical trajectory of the vehicle. Finally, we experimented with our method and existing methods on the public Next Generation Simulation (NGSIM) dataset. The experimental results show that the error of our model is reduced by about 10% compared with the state-of-the-art model. And it also improves about 10 times in two key metrics, namely the number of parameters and inference time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
OYZY完成签到,获得积分10
刚刚
刚刚
茶茶完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
快乐难敌发布了新的文献求助10
4秒前
4秒前
大气如雪发布了新的文献求助10
4秒前
啊啊啊啊完成签到,获得积分10
5秒前
5秒前
Akim应助潇洒小天鹅采纳,获得30
5秒前
6秒前
6秒前
TUTUKing完成签到,获得积分10
6秒前
小亮哈哈发布了新的文献求助10
7秒前
打工肥仔应助晓薇采纳,获得30
7秒前
8秒前
依云矿泉水完成签到,获得积分10
9秒前
LiangHu发布了新的文献求助10
9秒前
震动的问寒完成签到,获得积分10
9秒前
背后丹妗发布了新的文献求助10
10秒前
111完成签到,获得积分10
10秒前
糯米糍发布了新的文献求助20
11秒前
寒江雪完成签到,获得积分20
11秒前
11秒前
11发布了新的文献求助10
12秒前
12秒前
小卢完成签到,获得积分10
13秒前
坚强三德发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
15秒前
小二郎应助TresAU采纳,获得10
16秒前
大气如雪完成签到,获得积分20
16秒前
16秒前
zzx完成签到,获得积分10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271