An end-to-end weakly supervised learning framework for cancer subtype classification using histopathological slides

计算机科学 人工智能 机器学习 补语(音乐) 模式识别(心理学) 编码(集合论) 数据挖掘 生物化学 化学 集合(抽象数据类型) 互补 程序设计语言 基因 表型
作者
Hongren Zhou,Hechang Chen,Bo Yu,Shuchao Pang,Xianling Cong,Lele Cong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121379-121379 被引量:5
标识
DOI:10.1016/j.eswa.2023.121379
摘要

AI-powered analysis of histopathology data has become an invaluable assistant for pathologists due to its efficiency and accuracy. However, existing deep learning methods still face some challenges in specifying cancer subtypes. For example, the ultra-high resolution of histopathological slides generally contains numerous redundant features, which are not useful for cancer subtype classification and thus lead to considerable computational costs. Moreover, the lack of manual annotations of disease-specific regions (i.e., patch-level annotations) from experts makes it more difficult to learn such histological features with only slide-level labels. In this paper, we propose an end-to-end weakly supervised learning framework called EWSLF to address these issues. First, we employ a cluster-based sampling strategy to refine the histological features for further training, which can improve classification accuracy and reduce computational cost. Second, we employ a multi-branch attention mechanism to produce patch-level pseudo-labels and aggregate the patch features into slide-level features, which can complement the missing patch-level labels from experts. Experimental results on both public and in-house datasets demonstrate the superiority and credible results of our model compared with the state-of-the-art methods for cancer subtype classification. Code: https://github.com/hongren21/ewslf.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助丰那个丰采纳,获得10
刚刚
玖Nine发布了新的文献求助10
刚刚
所所应助121采纳,获得20
刚刚
Lowe完成签到,获得积分10
1秒前
2秒前
超自然关注了科研通微信公众号
4秒前
4秒前
123完成签到,获得积分10
5秒前
fighting完成签到 ,获得积分10
5秒前
6秒前
H-kevin.完成签到,获得积分10
7秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
15秒前
叶子完成签到,获得积分10
16秒前
17秒前
鱼蛋丸子完成签到,获得积分10
19秒前
浮云发布了新的文献求助10
20秒前
21秒前
圆锥香蕉发布了新的文献求助50
22秒前
26秒前
佳佳应助闲听松风眠采纳,获得10
27秒前
超自然发布了新的文献求助10
27秒前
ding应助玖Nine采纳,获得10
28秒前
隐形曼青应助玖Nine采纳,获得10
28秒前
荡秋千的猴子完成签到,获得积分10
29秒前
叶子发布了新的文献求助10
31秒前
CodeCraft应助忧郁丹彤采纳,获得10
32秒前
35秒前
滴滴答答完成签到 ,获得积分10
35秒前
哦噢藕完成签到,获得积分10
35秒前
田様应助科研通管家采纳,获得10
35秒前
35秒前
Orange应助科研通管家采纳,获得10
35秒前
Rondab应助科研通管家采纳,获得10
36秒前
Rondab应助科研通管家采纳,获得10
36秒前
领导范儿应助科研通管家采纳,获得10
36秒前
充电宝应助科研通管家采纳,获得10
36秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167