无粘流
弱解
数学
类型(生物学)
障碍物
数学分析
障碍物问题
Dirichlet分布
Dirichlet问题
应用数学
纯数学
物理
经典力学
边值问题
生态学
边界(拓扑)
政治学
法学
生物
作者
Pedro Miguel Campos,José Francisco Rodrigues
出处
期刊:Discrete and Continuous Dynamical Systems - Series S
[American Institute of Mathematical Sciences]
日期:2023-01-01
卷期号:16 (12): 3813-3836
标识
DOI:10.3934/dcdss.2023164
摘要
We consider weak solutions for the obstacle-type viscoelastic ($ \nu>0 $) and very weak solutions for the obstacle inviscid ($ \nu = 0 $) Dirichlet problems for the heterogeneous and anisotropic wave equation in a fractional framework based on the Riesz fractional gradient $ D^s $ ($ 0<s<1 $). We use weak solutions of the viscous problem to obtain very weak solutions of the inviscid problem when $ \nu\searrow 0 $. We prove that the weak and very weak solutions of those problems in the fractional setting converge as $ s\nearrow 1 $ to a weak solution and to a very weak solution, respectively, of the correspondent problems in the classical framework.
科研通智能强力驱动
Strongly Powered by AbleSci AI