A multiclass simulation-based dynamic traffic assignment model for mixed traffic flow of connected and autonomous vehicles and human-driven vehicles

流量(计算机网络) 微观交通流模型 计算机科学 交通模拟 微模拟 交通生成模型 模拟 运输工程 实时计算 工程类 计算机网络
作者
Behzad Bamdad Mehrabani,Jakob Erdmann,Luca Sgambi,Seyedehsan Seyedabrishami,Maaike Snelder
出处
期刊:Transportmetrica [Informa]
卷期号:: 1-32 被引量:8
标识
DOI:10.1080/23249935.2023.2257805
摘要

AbstractConnected and Autonomous Vehicles (CAVs) may exhibit different driving and route choice behaviours compared to Human-Driven Vehicles (HDVs), which can result in a mixed traffic flow with multiple classes of route choice behaviour. Therefore, it is necessary to solve the Multiclass Traffic Assignment Problem (TAP) for mixed traffic flow. However, most existing studies have relied on analytical solutions. Furthermore, simulation-based methods have not fully considered all of CAVs' potential capabilities. This study presents an open-source solution framework for the multiclass simulation-based TAP in mixed traffic of CAVs and HDVs. The proposed model assumes that CAVs follow system optimal with rerouting capabilities, while HDVs follow user equilibrium. It also considers the impact of CAVs on road capacity at both micro and meso scales. The proposed model is demonstrated through three case studies. This study provides a valuable tool that can consider several assumptions for better understanding the impact of CAVs on mixed traffic flow.KEYWORDS: Simulation-based traffic assignmentConnected and Autonomous Vehicles (CAVs)mixed traffic flowHuman Driven Vehicles (HDVs)multiclass traffic assignment Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe corresponding author was supported by the Université catholique de Louvain under the 'Fonds Speciaux de Recherche' and the 'Erasmus +' programmes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好运粥完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
朴实初夏完成签到 ,获得积分10
1秒前
2秒前
PinKing完成签到,获得积分10
2秒前
musclesheep发布了新的文献求助10
3秒前
甜甜的曼荷完成签到,获得积分10
3秒前
ww发布了新的文献求助10
3秒前
wuhao发布了新的文献求助10
4秒前
ccm应助SSR采纳,获得10
4秒前
小二郎应助东晓采纳,获得10
5秒前
xuhaoo0125完成签到,获得积分10
5秒前
ding应助DRDOC采纳,获得10
6秒前
Sera完成签到,获得积分10
6秒前
隐形曼青应助张莹采纳,获得10
6秒前
深情安青应助滴滴答答采纳,获得10
6秒前
Akim应助小春采纳,获得10
7秒前
8秒前
8秒前
wuhao完成签到,获得积分10
9秒前
9秒前
Wsn完成签到,获得积分10
9秒前
大佬完成签到,获得积分10
9秒前
calm完成签到,获得积分10
10秒前
10秒前
一秋一年完成签到,获得积分10
10秒前
Tao2023完成签到,获得积分10
10秒前
zz完成签到,获得积分10
10秒前
Vicki完成签到,获得积分0
10秒前
11发布了新的文献求助10
10秒前
好困应助御史采纳,获得10
11秒前
12秒前
12秒前
12秒前
牧林听风完成签到 ,获得积分10
12秒前
13秒前
13秒前
爱听歌的半凡完成签到,获得积分10
13秒前
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699639
求助须知:如何正确求助?哪些是违规求助? 5132174
关于积分的说明 15227194
捐赠科研通 4854644
什么是DOI,文献DOI怎么找? 2604831
邀请新用户注册赠送积分活动 1556206
关于科研通互助平台的介绍 1514427