Predicting the Risk of Breast Cancer Recurrence and Metastasis based on miRNA Expression

乳腺癌 转移 小RNA 肿瘤科 内科学 医学 辅助治疗 比例危险模型 癌症 生物信息学 生物 基因 遗传学
作者
Yaping Lv,Yanfeng Wang,Yumeng Zhang,Shuzhen Chen,Yuhua Yao
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (5): 482-489
标识
DOI:10.2174/1574893618666230914105741
摘要

Background: Even after surgery, breast cancer patients still suffer from recurrence and metastasis. Thus, it is critical to predict accurately the risk of recurrence and metastasis for individual patients, which can help determine the appropriate adjuvant therapy. Methods: The purpose of this study is to investigate and compare the performance of several categories of molecular biomarkers, i.e., microRNA (miRNA), long non-coding RNA (lncRNA), messenger RNA (mRNA), and copy number variation (CNV), in predicting the risk of breast cancer recurrence and metastasis. First, the molecular data (miRNA, lncRNA, mRNA, and CNV) of 483 breast cancer patients were downloaded from the Cancer Genome Atlas, which were then randomly divided into the training and test sets with a ratio of 7:3. Second, the feature selection process was applied by univariate Cox and multivariate Cox variance analysis on the training set (e.g., 15 miRNAs). According to the selected features (e.g., 15 miRNAs), a random forest classifier and several other classification methods were established according to the label of recurrence and metastasis. Finally, the performances of the classification models were compared and evaluated on the test set. Results: The area under the ROC curve was 0.70 for miRNA, better than those using other biomarkers. Conclusion: These results indicated that miRNA has important guiding significance in predicting recurrence and metastasis of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
年轻浩然发布了新的文献求助80
1秒前
倒霉兔子完成签到,获得积分0
3秒前
科研通AI2S应助完美的海秋采纳,获得10
3秒前
思源应助可乐采纳,获得10
3秒前
Hyunjin发布了新的文献求助10
3秒前
所所应助xiaoxiaoliang采纳,获得10
4秒前
4秒前
4秒前
呐呐应助三十四画生采纳,获得10
5秒前
在水一方应助LZHWSND采纳,获得10
5秒前
247793325发布了新的文献求助10
8秒前
Urologyzz完成签到,获得积分10
8秒前
11秒前
11秒前
11秒前
11秒前
13秒前
14秒前
xiaodu20230228完成签到 ,获得积分10
14秒前
14秒前
于芋菊发布了新的文献求助10
14秒前
科研小白完成签到,获得积分10
14秒前
14秒前
247793325完成签到,获得积分10
15秒前
诸茹嫣完成签到 ,获得积分10
16秒前
搜集达人应助动听的梦容采纳,获得20
16秒前
轻吟发布了新的文献求助10
17秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
HCLonely应助科研通管家采纳,获得10
18秒前
流星噬月发布了新的文献求助10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
闪闪龙猫发布了新的文献求助10
19秒前
HCLonely应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
qianqian发布了新的文献求助10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243773
求助须知:如何正确求助?哪些是违规求助? 2887609
关于积分的说明 8249256
捐赠科研通 2556298
什么是DOI,文献DOI怎么找? 1384427
科研通“疑难数据库(出版商)”最低求助积分说明 649847
邀请新用户注册赠送积分活动 625794