Corneal metabolic biomarkers for moderate and high myopia in human

代谢组学 眼科 代谢组 方差分析 接收机工作特性 线性判别分析 医学 小切口晶状体摘除术 角膜 化学 色谱法 内科学 角膜磨镶术 计算机科学 人工智能
作者
Wenjing Wu,Yanzheng Song,Mingshen Sun,Yu Li,Yushan Xu,Mengyao Xu,Yuxin Yang,Shi‐Ming Li,Fengju Zhang
出处
期刊:Experimental Eye Research [Elsevier]
卷期号:237: 109689-109689 被引量:11
标识
DOI:10.1016/j.exer.2023.109689
摘要

This study aimed to identify the corneal metabolic biomarkers for moderate and high myopia in human. We enrolled 221 eyes from 221 subjects with myopia to perform the femtosecond laser small incision lenticule extraction (SMILE) surgery. Among these, 71 eyes of 71 subjects were enrolled in the low myopic group, 75 eyes of 75 subjects in the moderate myopic group and 75 eyes of 75 subjects in the high myopic group. The untargeted metabolomics analysis was performed to analyze the corneal tissues extracted during the SMILE surgery using an ultra-high-performance liquid chromatography (UHPLC) coupled to a quadrupole time-of-flight (Q-TOF) mass spectrometry (MS). The one-way analysis of variance (ANOVA) was used to identify the different metabolites among the three myopic groups, the orthogonal partial least-squares discriminant analysis (OPLS-DA) model was used to reveal the different metabolites between moderate myopia and low myopia, and between high myopia and low myopia. The Venn gram was used to find the overlapped metabolites of the three datasets of the different metabolites. The stepwise multiple linear regression analysis was used to determine the metabolic molecules associated with manifest refractive spherical equivalents (MRSE). The Receiver Operating Characteristics (ROC) analysis was performed to reveal the corneal biomarkers for moderate and high myopia. The hub biomarker was further selected by the networks among different metabolites created by the Cytoscape software. A total of 1594 metabolites were identified in myopic corneas. 321 metabolites were different among the three myopic groups, 106 metabolites were different between high myopic corneas and low myopic corneas, 104 metabolites were different between moderate myopic corneas and low myopic corneas, and 30 metabolic molecules overlapped among the three datasets. The multivariate linear regression analysis revealed the myopic degree was significantly influenced by the corneal levels of azelaic acid, arginine-proline (Arg-Pro), 1-stearoyl-2-myristoyl-sn-glycero-3-phosphocholine, and hypoxanthine. The ROC curve analysis showed that azelaic acid, Arg-Pro and hypoxanthine were effective in discriminating low myopia from moderate to high myopia with the area under the curve (AUC) values as 0.982, 0.991 and 0.982 for azelaic acid, Arg-Pro and hypoxanthine respectively. The network analysis suggested that Arg-Pro had the maximum connections among these three biomarkers. Thus, this study identified azelaic acid, Arg-Pro and hypoxanthine as corneal biomarkers to discriminate low myopia from moderate to high myopia, with Arg-Pro serving as the hub biomarker for moderate and high myopia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助edtaa采纳,获得10
刚刚
万能图书馆应助orange采纳,获得10
1秒前
Yu完成签到,获得积分10
1秒前
221发布了新的文献求助10
2秒前
znn发布了新的文献求助10
2秒前
2秒前
maq完成签到,获得积分10
2秒前
刚国忠发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
3秒前
霸气的忆丹完成签到,获得积分10
3秒前
韩麒嘉发布了新的文献求助10
3秒前
3秒前
3秒前
bingyv发布了新的文献求助10
4秒前
4秒前
反之完成签到,获得积分10
4秒前
小圆不圆完成签到,获得积分10
5秒前
ding5完成签到,获得积分10
5秒前
5秒前
5秒前
软语完成签到,获得积分10
5秒前
chuzai完成签到,获得积分10
6秒前
小二郎应助zhanng采纳,获得10
6秒前
6秒前
刘厚麟发布了新的文献求助20
7秒前
7秒前
Lucas应助一个小鸡腿采纳,获得10
7秒前
7秒前
英俊的铭应助AI_S采纳,获得10
7秒前
8秒前
8秒前
小俊发布了新的文献求助10
8秒前
bc应助Angel采纳,获得30
8秒前
杨好圆完成签到,获得积分10
8秒前
Xie完成签到,获得积分10
8秒前
Stone发布了新的文献求助10
8秒前
原野小年发布了新的文献求助10
9秒前
一十六发布了新的文献求助10
9秒前
大白牛完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836