Pore‐Scale Modeling of Coupled CO2 Flow and Dissolution in 3D Porous Media for Geological Carbon Storage

溶解 材料科学 传质 超临界流体 多孔介质 多孔性 卤水 润湿 矿物学 化学工程 地质学 热力学 复合材料 化学 色谱法 工程类 物理
作者
Yongfei Yang,Jinlei Wang,Jianzhong Wang,Yingwen Li,Hai Sun,Lei Zhang,Junjie Zhong,Kai Zhang,Jun Ye
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (10) 被引量:7
标识
DOI:10.1029/2023wr035402
摘要

Abstract Dissolution trapping is one of the crucial trapping mechanisms for geological carbon storage in deep saline aquifers. The injected supercritical CO 2 (scCO 2 ) flow and dissolution processes are coupled and interact with each other. Therefore, we performed direct numerical simulations in three‐dimensional micro‐CT images of sandstones using the volume of fluid and continuous species transfer method. We investigated the coupled scCO 2 flow and dissolution processes at pore‐scale under different rock structures, capillary numbers, and rock wettability conditions. The dynamic evolution of the scCO 2 /brine phase distribution and scCO 2 concentration distribution occurring during the injection period were presented and analyzed. Complicated coupling mechanisms between scCO 2 ‐brine two‐phase flow and interphase mass transfer were also revealed. Our results showed that the scCO 2 dissolution was highly dependent on the local distribution of scCO 2 clusters. The rock with relatively high porosity and permeability would have more capacity for scCO 2 injection resulting in a faster and greater dissolution of scCO 2 in brine. The effect of capillary number on the scCO 2 dissolution process was related to the range of capillary number. The effective upscaled (macro‐scale) mass transfer coefficient ( k A ) during scCO 2 dissolution was evaluated, and the power‐law relationship between k A and Péclet number was obtained. Rock wettability was found to be another factor controlling the scCO 2 dissolution process by affecting the scCO 2 ‐brine interfacial area. Our pore‐scale study provides a deep understanding of the scCO 2 dissolution trapping mechanism, which is important to enhance the prediction of sequestration risk and improve sequestration efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫冰岚完成签到,获得积分20
1秒前
NexusExplorer应助迷人听双采纳,获得10
1秒前
1秒前
荒野牧人完成签到,获得积分10
2秒前
cnulee完成签到,获得积分10
2秒前
领导范儿应助李善聪采纳,获得10
3秒前
天天快乐应助娜娜采纳,获得10
3秒前
3秒前
4秒前
5秒前
5秒前
SYLH应助dundun采纳,获得10
5秒前
6秒前
少年愁发布了新的文献求助10
7秒前
7秒前
7秒前
kingwill应助YYY采纳,获得20
8秒前
8秒前
欣慰的星月完成签到,获得积分10
8秒前
8秒前
8秒前
LIN发布了新的文献求助30
8秒前
szw完成签到,获得积分10
8秒前
噗噗完成签到,获得积分10
8秒前
咖啡续命完成签到,获得积分10
9秒前
9秒前
搞怪的羊发布了新的文献求助10
10秒前
10秒前
quxiaofei发布了新的文献求助10
11秒前
咖啡续命发布了新的文献求助10
11秒前
edvced完成签到,获得积分20
12秒前
Yewen发布了新的文献求助10
13秒前
迷人听双发布了新的文献求助10
13秒前
李善聪发布了新的文献求助10
14秒前
大大大飞机完成签到,获得积分20
15秒前
ding应助淡然向松采纳,获得10
15秒前
15秒前
羊Q发布了新的文献求助30
15秒前
科研通AI2S应助陈啊炳采纳,获得10
16秒前
Ava应助内向忆南采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470472
求助须知:如何正确求助?哪些是违规求助? 3063446
关于积分的说明 9083480
捐赠科研通 2753873
什么是DOI,文献DOI怎么找? 1511131
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698147