Network and covariate adjusted response‐adaptive design for binary response

协变量 样本量测定 混淆 随机化 计算机科学 I类和II类错误 统计能力 限制随机化 统计 研究设计 临床研究设计 网络规划与设计 临床试验 机器学习 数学 医学 计算机网络 病理
作者
Hao Mei,Jiaxin Xie,Yichen Qin,Yang Li
出处
期刊:Statistics in Medicine [Wiley]
卷期号:42 (29): 5369-5388
标识
DOI:10.1002/sim.9915
摘要

Randomization is a distinguishing feature of clinical trials for unbiased assessment of treatment efficacy. With a growing demand for more flexible and efficient randomization schemes and motivated by the idea of adaptive design, in this article we propose the network and covariate adjusted response‐adaptive (NCARA) design that can concurrently manage three challenges: (1) maximizing benefits of a trial by assigning more patients to the superior treatment group randomly; (2) balancing social network ties across treatment arms to eliminate potential network interference; and (3) ensuring balance of important covariates, such as age, gender, and other potential confounders. We conduct simulation with different network structures and a variety of parameter settings. It is observed that the NCARA design outperforms four alternative randomization designs in solving the above‐mentioned problems and has comparable power and type I error for detecting true difference between treatment groups. In addition, we conduct real data analysis to implement the new design in two clinical trials. Compared to equal randomization (the original design utilized in the trials), the NCARA design slightly increases power, largely increases the percentage of patients assigned to the better‐performing group, and significantly improves network and covariate balances. It is also noted that the advantages of the NCARA design are augmented when the sample size is small and the level of network interference is high. In summary, the proposed NCARA design assists researchers in conducting clinical trials with high‐quality and high‐efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
化学狗完成签到,获得积分10
1秒前
yud完成签到 ,获得积分10
1秒前
2秒前
拼搏思卉发布了新的文献求助10
2秒前
3秒前
雨碎寒江完成签到,获得积分10
3秒前
4秒前
会飞的木头完成签到,获得积分10
4秒前
雪白涵山发布了新的文献求助20
4秒前
shouyu29应助MADKAI采纳,获得10
4秒前
Seiswan发布了新的文献求助10
4秒前
小小菜鸟完成签到,获得积分10
5秒前
5秒前
西西弗斯完成签到,获得积分10
5秒前
KT2440完成签到,获得积分10
6秒前
顾阿秀发布了新的文献求助10
6秒前
6秒前
6秒前
gnr2000完成签到,获得积分0
6秒前
7秒前
7秒前
BareBear应助赖道之采纳,获得10
7秒前
LEMON完成签到,获得积分10
7秒前
Ava应助buuyoo采纳,获得10
8秒前
情怀应助liuwei采纳,获得10
8秒前
aaefv完成签到,获得积分10
8秒前
小小菜鸟发布了新的文献求助10
8秒前
深情安青应助123采纳,获得10
8秒前
赫初晴完成签到 ,获得积分10
8秒前
平淡的亦丝应助明研采纳,获得20
8秒前
10秒前
库外发布了新的文献求助10
11秒前
汉堡包应助清新的冷松采纳,获得10
11秒前
从心应助LiShin采纳,获得10
11秒前
帅气的听莲完成签到,获得积分10
11秒前
英姑应助Areslcy采纳,获得10
11秒前
善学以致用应助zxz采纳,获得10
12秒前
whatever应助luoshi采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762