Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality

医学 图像质量 磁共振弥散成像 核医学 有效扩散系数 信噪比(成像) 磁共振成像 人工智能 图像分辨率 放射科 计算机科学 图像(数学) 电信
作者
Kang‐Lung Lee,Dimitri A. Kessler,Simon Dezonie,Wellington Chishaya,Christopher J. Shepherd,Bruno Carmo,Martin J. Graves,Tristan Barrett
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:166: 111017-111017 被引量:29
标识
DOI:10.1016/j.ejrad.2023.111017
摘要

To evaluate the impact of a commercially available deep learning-based reconstruction (DLR) algorithm with varying combinations of DLR noise reduction settings and imaging parameters on quantitative and qualitative image quality, PI-RADS classification and examination time in prostate T2-weighted (T2WI) and diffusion-weighted (DWI) imaging.Forty patients were included. Standard-of-care (SoC) prostate MRI sequences including T2WI and DWI were reconstructed without and with different DLR de-noising levels (low, medium, high). In addition, faster T2WI(Fast) and DWI(Fast) sequences, and a higher resolution T2WI(HR) sequence were evaluated. Quantitative analysis included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values. Two radiologists performed qualitative analysis, independently evaluating imaging datasets using 5-point scoring scales for image quality and artifacts. PI-RADS category assignment was also performed by the more experienced radiologist.All DLR levels resulted in significantly higher SNR and CNR compared to the DLR(off) acquisitions. DLR allowed the acquisition time to be reduced by 33% for T2WI(Fast) and 49% for DWI(Fast) compared to SoC, without affecting image quality, whilst T2WI(HR) with DLR allowed for a 73% increase in spatial resolution in the phase encode direction compared to SoC. The inter-reader agreement for image quality and artifact scores was substantial for all subjective measurements on T2WI and DWI. The T2WI(Fast) protocol with DLR(medium) and DWI(Fast) with DLR(low) received the highest qualitative quality score.DLR can reduce T2WI and DWI acquisition time and increase SNR and CNR without compromising image quality or altering PI-RADS classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangya应助中央戏精学院采纳,获得10
1秒前
KYMH完成签到,获得积分10
1秒前
所所应助xiaojin采纳,获得10
1秒前
1秒前
三番发布了新的文献求助10
2秒前
曹欣雨完成签到,获得积分10
3秒前
晖晖shining完成签到,获得积分10
3秒前
3秒前
通透科研完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
慕青应助菠萝吹雪采纳,获得10
6秒前
ASHhan111完成签到,获得积分10
6秒前
lin发布了新的文献求助10
6秒前
tracywan完成签到,获得积分10
7秒前
ding应助张哲采纳,获得10
7秒前
得意凡人完成签到,获得积分10
9秒前
tracywan发布了新的文献求助10
9秒前
从此发布了新的文献求助10
9秒前
word麻鸭完成签到 ,获得积分10
10秒前
George发布了新的文献求助10
11秒前
俞秋烟发布了新的文献求助10
11秒前
科研通AI2S应助小鱼儿采纳,获得10
11秒前
xupeng发布了新的文献求助20
12秒前
香蕉觅云应助kbc采纳,获得10
12秒前
武庆云关注了科研通微信公众号
12秒前
13秒前
福荔完成签到 ,获得积分10
13秒前
FashionBoy应助三番采纳,获得10
13秒前
wanci应助zjy采纳,获得10
14秒前
小问号完成签到,获得积分10
14秒前
干净的天奇完成签到 ,获得积分10
16秒前
LiLy发布了新的文献求助10
16秒前
称心的小鸽子完成签到,获得积分10
16秒前
luobeimin发布了新的文献求助10
17秒前
鲤鱼鸽子应助细腻的歌曲采纳,获得10
17秒前
关关完成签到 ,获得积分10
17秒前
17秒前
幼儿园一姐完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397