Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality

医学 图像质量 磁共振弥散成像 核医学 有效扩散系数 信噪比(成像) 磁共振成像 人工智能 图像分辨率 放射科 计算机科学 图像(数学) 电信
作者
Kang‐Lung Lee,Dimitri A. Kessler,Simon Dezonie,Wellington Chishaya,Christopher J. Shepherd,Bruno Carmo,Martin J. Graves,Tristan Barrett
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:166: 111017-111017 被引量:47
标识
DOI:10.1016/j.ejrad.2023.111017
摘要

To evaluate the impact of a commercially available deep learning-based reconstruction (DLR) algorithm with varying combinations of DLR noise reduction settings and imaging parameters on quantitative and qualitative image quality, PI-RADS classification and examination time in prostate T2-weighted (T2WI) and diffusion-weighted (DWI) imaging.Forty patients were included. Standard-of-care (SoC) prostate MRI sequences including T2WI and DWI were reconstructed without and with different DLR de-noising levels (low, medium, high). In addition, faster T2WI(Fast) and DWI(Fast) sequences, and a higher resolution T2WI(HR) sequence were evaluated. Quantitative analysis included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values. Two radiologists performed qualitative analysis, independently evaluating imaging datasets using 5-point scoring scales for image quality and artifacts. PI-RADS category assignment was also performed by the more experienced radiologist.All DLR levels resulted in significantly higher SNR and CNR compared to the DLR(off) acquisitions. DLR allowed the acquisition time to be reduced by 33% for T2WI(Fast) and 49% for DWI(Fast) compared to SoC, without affecting image quality, whilst T2WI(HR) with DLR allowed for a 73% increase in spatial resolution in the phase encode direction compared to SoC. The inter-reader agreement for image quality and artifact scores was substantial for all subjective measurements on T2WI and DWI. The T2WI(Fast) protocol with DLR(medium) and DWI(Fast) with DLR(low) received the highest qualitative quality score.DLR can reduce T2WI and DWI acquisition time and increase SNR and CNR without compromising image quality or altering PI-RADS classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
傲娇的鹰完成签到,获得积分10
2秒前
正电荷完成签到 ,获得积分10
2秒前
Charles发布了新的文献求助10
2秒前
2秒前
Andy完成签到,获得积分10
2秒前
ljhhjl完成签到 ,获得积分10
3秒前
耶布达发布了新的文献求助10
3秒前
3秒前
5秒前
YF完成签到,获得积分10
5秒前
希望天下0贩的0应助123采纳,获得10
6秒前
聪明山芙完成签到,获得积分10
6秒前
8秒前
任虎发布了新的文献求助30
8秒前
天天快乐应助pengxiangfeng采纳,获得10
9秒前
LouisKing发布了新的文献求助10
9秒前
寂灭之时完成签到,获得积分10
9秒前
霸气侧漏发布了新的文献求助10
10秒前
12秒前
点金石发布了新的文献求助10
12秒前
dsajkdlas发布了新的文献求助10
13秒前
survivor1320发布了新的文献求助10
14秒前
cheryl发布了新的文献求助10
15秒前
科研通AI6应助果冻采纳,获得20
15秒前
李爱国应助乳酸菌小面包采纳,获得10
16秒前
平常的蓝天完成签到,获得积分20
17秒前
彭于晏应助dsajkdlas采纳,获得10
18秒前
18秒前
lijingyi完成签到,获得积分10
18秒前
科研通AI6应助崔哈哈采纳,获得10
19秒前
煜祺完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
情怀应助hgc采纳,获得10
20秒前
天天快乐应助点金石采纳,获得10
22秒前
22秒前
Loong完成签到,获得积分10
22秒前
小李发布了新的文献求助10
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339665
求助须知:如何正确求助?哪些是违规求助? 4476410
关于积分的说明 13931491
捐赠科研通 4371956
什么是DOI,文献DOI怎么找? 2402218
邀请新用户注册赠送积分活动 1395083
关于科研通互助平台的介绍 1367077