Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality

医学 图像质量 磁共振弥散成像 核医学 有效扩散系数 信噪比(成像) 磁共振成像 人工智能 图像分辨率 放射科 计算机科学 图像(数学) 电信
作者
Kang‐Lung Lee,Dimitri A. Kessler,Simon Dezonie,Wellington Chishaya,Christopher J. Shepherd,Bruno Carmo,Martin J. Graves,Tristan Barrett
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:166: 111017-111017 被引量:47
标识
DOI:10.1016/j.ejrad.2023.111017
摘要

To evaluate the impact of a commercially available deep learning-based reconstruction (DLR) algorithm with varying combinations of DLR noise reduction settings and imaging parameters on quantitative and qualitative image quality, PI-RADS classification and examination time in prostate T2-weighted (T2WI) and diffusion-weighted (DWI) imaging.Forty patients were included. Standard-of-care (SoC) prostate MRI sequences including T2WI and DWI were reconstructed without and with different DLR de-noising levels (low, medium, high). In addition, faster T2WI(Fast) and DWI(Fast) sequences, and a higher resolution T2WI(HR) sequence were evaluated. Quantitative analysis included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values. Two radiologists performed qualitative analysis, independently evaluating imaging datasets using 5-point scoring scales for image quality and artifacts. PI-RADS category assignment was also performed by the more experienced radiologist.All DLR levels resulted in significantly higher SNR and CNR compared to the DLR(off) acquisitions. DLR allowed the acquisition time to be reduced by 33% for T2WI(Fast) and 49% for DWI(Fast) compared to SoC, without affecting image quality, whilst T2WI(HR) with DLR allowed for a 73% increase in spatial resolution in the phase encode direction compared to SoC. The inter-reader agreement for image quality and artifact scores was substantial for all subjective measurements on T2WI and DWI. The T2WI(Fast) protocol with DLR(medium) and DWI(Fast) with DLR(low) received the highest qualitative quality score.DLR can reduce T2WI and DWI acquisition time and increase SNR and CNR without compromising image quality or altering PI-RADS classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鱼梓完成签到,获得积分10
1秒前
Freeasy完成签到 ,获得积分10
2秒前
李爱国应助Bai采纳,获得10
4秒前
巴啦啦小魔仙完成签到 ,获得积分10
4秒前
脑洞疼应助一梦倾城采纳,获得10
4秒前
4秒前
激昂的柚子完成签到,获得积分20
5秒前
5秒前
陈皮软糖完成签到 ,获得积分10
6秒前
un发布了新的文献求助10
6秒前
hjx发布了新的文献求助10
7秒前
ren完成签到,获得积分20
7秒前
隐形曼青应助唐人雄采纳,获得10
7秒前
8秒前
8秒前
顽主完成签到,获得积分10
8秒前
FY完成签到,获得积分10
9秒前
10秒前
10秒前
123455完成签到,获得积分10
11秒前
11秒前
12秒前
小白发布了新的文献求助10
13秒前
ke完成签到,获得积分10
13秒前
阳佟雨南发布了新的文献求助10
13秒前
13秒前
雨夜茑萝完成签到 ,获得积分10
13秒前
Baraka发布了新的文献求助10
14秒前
小羊发布了新的文献求助10
14秒前
zzuli_liu完成签到,获得积分10
14秒前
vincy完成签到 ,获得积分0
16秒前
1751587229发布了新的文献求助10
17秒前
多发文章完成签到,获得积分10
17秒前
17秒前
浮游应助liugm采纳,获得10
17秒前
llllll完成签到,获得积分10
17秒前
希望天下0贩的0应助89采纳,获得10
18秒前
喵喵喵发布了新的文献求助30
18秒前
anz完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305347
求助须知:如何正确求助?哪些是违规求助? 4451536
关于积分的说明 13852225
捐赠科研通 4338937
什么是DOI,文献DOI怎么找? 2382253
邀请新用户注册赠送积分活动 1377338
关于科研通互助平台的介绍 1344780