Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality

医学 图像质量 磁共振弥散成像 核医学 有效扩散系数 信噪比(成像) 磁共振成像 人工智能 图像分辨率 放射科 计算机科学 图像(数学) 电信
作者
Kang‐Lung Lee,Dimitri A. Kessler,Simon Dezonie,Wellington Chishaya,Christopher J. Shepherd,Bruno Carmo,Martin J. Graves,Tristan Barrett
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:166: 111017-111017 被引量:47
标识
DOI:10.1016/j.ejrad.2023.111017
摘要

To evaluate the impact of a commercially available deep learning-based reconstruction (DLR) algorithm with varying combinations of DLR noise reduction settings and imaging parameters on quantitative and qualitative image quality, PI-RADS classification and examination time in prostate T2-weighted (T2WI) and diffusion-weighted (DWI) imaging.Forty patients were included. Standard-of-care (SoC) prostate MRI sequences including T2WI and DWI were reconstructed without and with different DLR de-noising levels (low, medium, high). In addition, faster T2WI(Fast) and DWI(Fast) sequences, and a higher resolution T2WI(HR) sequence were evaluated. Quantitative analysis included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values. Two radiologists performed qualitative analysis, independently evaluating imaging datasets using 5-point scoring scales for image quality and artifacts. PI-RADS category assignment was also performed by the more experienced radiologist.All DLR levels resulted in significantly higher SNR and CNR compared to the DLR(off) acquisitions. DLR allowed the acquisition time to be reduced by 33% for T2WI(Fast) and 49% for DWI(Fast) compared to SoC, without affecting image quality, whilst T2WI(HR) with DLR allowed for a 73% increase in spatial resolution in the phase encode direction compared to SoC. The inter-reader agreement for image quality and artifact scores was substantial for all subjective measurements on T2WI and DWI. The T2WI(Fast) protocol with DLR(medium) and DWI(Fast) with DLR(low) received the highest qualitative quality score.DLR can reduce T2WI and DWI acquisition time and increase SNR and CNR without compromising image quality or altering PI-RADS classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gouki完成签到 ,获得积分10
刚刚
晓驿发布了新的文献求助100
刚刚
1秒前
chizhi完成签到,获得积分10
2秒前
jjc发布了新的文献求助10
2秒前
CodeCraft应助PhDL1采纳,获得10
2秒前
lyp7028完成签到,获得积分10
2秒前
王孝松发布了新的文献求助10
3秒前
陈昭琼发布了新的文献求助10
3秒前
研友_VZG64n完成签到,获得积分10
3秒前
LIUY发布了新的文献求助10
3秒前
enen发布了新的文献求助10
4秒前
4秒前
4秒前
清韵微风完成签到,获得积分10
4秒前
雨晴发布了新的文献求助10
5秒前
Jasper应助uu白采纳,获得10
6秒前
6秒前
化身孤岛的鲸完成签到 ,获得积分10
6秒前
Duha完成签到,获得积分10
7秒前
7秒前
7秒前
上上签完成签到,获得积分10
7秒前
醉熏的雁完成签到 ,获得积分10
8秒前
情怀应助Gao采纳,获得10
8秒前
NanNan626发布了新的文献求助10
8秒前
8秒前
杭紫雪完成签到,获得积分10
8秒前
Re完成签到,获得积分10
8秒前
温柔的中蓝完成签到,获得积分10
8秒前
Akim应助暴躁的小蘑菇采纳,获得10
9秒前
懒羊羊完成签到,获得积分10
9秒前
繁荣的凡双完成签到,获得积分10
9秒前
momo完成签到,获得积分10
9秒前
10秒前
科研通AI6应助笑傲江湖采纳,获得30
10秒前
量子星尘发布了新的文献求助10
10秒前
mingxuan完成签到,获得积分10
11秒前
《子非鱼》完成签到,获得积分10
11秒前
cccc完成签到,获得积分10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151604
求助须知:如何正确求助?哪些是违规求助? 4347231
关于积分的说明 13536167
捐赠科研通 4189937
什么是DOI,文献DOI怎么找? 2297805
邀请新用户注册赠送积分活动 1298127
关于科研通互助平台的介绍 1242778