Weighted side-window based gradient guided image filtering

计算机科学 增采样 色调映射 平滑的 人工智能 图像(数学) 高动态范围 计算机视觉 算法 动态范围
作者
Weimin Yuan,Meng Cai,Xiangzhi Bai
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110006-110006 被引量:4
标识
DOI:10.1016/j.patcog.2023.110006
摘要

Image filtering under guidance image, known as guided filtering (GF), has been successfully applied to a variety of applications. Existing GF methods utilize either conventional full window-based framework (FWF) or simple uniformly weighted aggregation strategy (UWA); thereby they suffer from edge-blurring. In this paper, based upon gradient guided filtering (GGF), a weighted side-window based gradient guided filtering (WSGGF) is proposed to address the aforementioned problem. First, both regression and adaptive regularization terms in GGF are improved upon eight side windows by introducing side window-based framework (SWF). L1 norm is adopted to choose the results calculated in side windows. Second, UWA strategy in GGF is replaced by a refined variance-based weighted average (VWA) aggregation. In VWA, the value of each weight is chosen inversely proportional to the corresponding estimator. We show that with these improvements our method can well retain the edge sharpness and is robust to visual artifacts. To cut down the time consumption, a fast version of WSGGF (FWSGGF) is further proposed by incorporating a simple but effective down-sampling strategy, which is about four times faster while maintaining the superior performance. By comparing with the state-of-the-art (SOTA) methods on edge-aware smoothing, detail enhancement, high dynamic range image (HDR) compression, image luminance adjustment, depth map upsampling and single image haze removal, the effectiveness and flexibility of our proposed methods are verified. The source code is available at: https://github.com/weimin581/WSGGF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的涛完成签到 ,获得积分10
2秒前
项初蝶完成签到,获得积分10
5秒前
龚幻梦发布了新的文献求助10
5秒前
无奈斑马发布了新的文献求助10
5秒前
Gary发布了新的文献求助10
6秒前
HUHU完成签到,获得积分10
6秒前
Soir完成签到 ,获得积分10
8秒前
maox1aoxin应助柒柒采纳,获得30
8秒前
8秒前
8秒前
玥来玥好发布了新的文献求助10
9秒前
昊康好完成签到,获得积分10
9秒前
10秒前
科研通AI2S应助xun采纳,获得10
11秒前
乔心发布了新的文献求助10
13秒前
化工牛马发布了新的文献求助10
16秒前
天天快乐应助wpc2o1o采纳,获得10
16秒前
18秒前
毛豆应助元谷雪采纳,获得10
19秒前
21秒前
两坨小腮红完成签到,获得积分10
21秒前
JamesPei应助乔心采纳,获得10
22秒前
dream完成签到 ,获得积分10
23秒前
xun完成签到,获得积分10
24秒前
辣不怕的香脆椒完成签到,获得积分10
24秒前
25秒前
zgx完成签到,获得积分10
25秒前
领导范儿应助Hongni采纳,获得10
25秒前
669完成签到,获得积分10
27秒前
Zer完成签到,获得积分10
27秒前
27秒前
FashionBoy应助斤斤采纳,获得10
27秒前
小蘑菇应助sssaasa采纳,获得10
28秒前
mm发布了新的文献求助10
30秒前
zz完成签到,获得积分10
32秒前
大明完成签到,获得积分10
32秒前
zjspidany发布了新的文献求助30
33秒前
sissiarno应助zjspidany采纳,获得50
37秒前
38秒前
英姑应助从容的烧鹅采纳,获得10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312299
求助须知:如何正确求助?哪些是违规求助? 2944955
关于积分的说明 8522182
捐赠科研通 2620750
什么是DOI,文献DOI怎么找? 1433015
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650153