Weighted side-window based gradient guided image filtering

计算机科学 增采样 色调映射 平滑的 人工智能 图像(数学) 高动态范围 计算机视觉 算法 动态范围
作者
Weimin Yuan,Meng Cai,Xiangzhi Bai
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110006-110006 被引量:4
标识
DOI:10.1016/j.patcog.2023.110006
摘要

Image filtering under guidance image, known as guided filtering (GF), has been successfully applied to a variety of applications. Existing GF methods utilize either conventional full window-based framework (FWF) or simple uniformly weighted aggregation strategy (UWA); thereby they suffer from edge-blurring. In this paper, based upon gradient guided filtering (GGF), a weighted side-window based gradient guided filtering (WSGGF) is proposed to address the aforementioned problem. First, both regression and adaptive regularization terms in GGF are improved upon eight side windows by introducing side window-based framework (SWF). L1 norm is adopted to choose the results calculated in side windows. Second, UWA strategy in GGF is replaced by a refined variance-based weighted average (VWA) aggregation. In VWA, the value of each weight is chosen inversely proportional to the corresponding estimator. We show that with these improvements our method can well retain the edge sharpness and is robust to visual artifacts. To cut down the time consumption, a fast version of WSGGF (FWSGGF) is further proposed by incorporating a simple but effective down-sampling strategy, which is about four times faster while maintaining the superior performance. By comparing with the state-of-the-art (SOTA) methods on edge-aware smoothing, detail enhancement, high dynamic range image (HDR) compression, image luminance adjustment, depth map upsampling and single image haze removal, the effectiveness and flexibility of our proposed methods are verified. The source code is available at: https://github.com/weimin581/WSGGF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的小熊猫完成签到,获得积分10
刚刚
Donnie完成签到,获得积分10
刚刚
若尘完成签到,获得积分10
1秒前
椰子完成签到 ,获得积分10
1秒前
1秒前
细腻涵菱完成签到,获得积分10
2秒前
吕耀炜完成签到,获得积分10
2秒前
2秒前
2秒前
简称王完成签到 ,获得积分10
2秒前
蓝莓松饼完成签到,获得积分10
3秒前
一路高飛完成签到,获得积分10
3秒前
赘婿应助andyxrz采纳,获得10
3秒前
Zhang完成签到,获得积分10
3秒前
4秒前
年轻冥茗完成签到,获得积分10
4秒前
apple发布了新的文献求助10
5秒前
CarterXD完成签到,获得积分10
5秒前
紧张的友灵完成签到,获得积分10
5秒前
SciGPT应助之仔饼采纳,获得10
6秒前
liudiqiu应助追寻的易烟采纳,获得10
6秒前
Chem is try发布了新的文献求助10
6秒前
6秒前
vsoar完成签到,获得积分10
6秒前
7秒前
8秒前
GGGGGGGGGG发布了新的文献求助10
8秒前
8秒前
打打应助hhh采纳,获得10
9秒前
抓恐龙关注了科研通微信公众号
9秒前
碳点godfather完成签到,获得积分10
9秒前
ren完成签到,获得积分20
9秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
10秒前
TG_FY完成签到,获得积分10
10秒前
10秒前
hhh完成签到,获得积分10
10秒前
JamesPei应助诗轩采纳,获得10
11秒前
TT完成签到,获得积分10
12秒前
reck发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672