Nuclei instance segmentation using a transformer-based graph convolutional network and contextual information augmentation

计算机科学 卷积神经网络 分割 最小边界框 人工智能 深度学习 模式识别(心理学) 特征提取 特征学习 跳跃式监视 骨干网 图形 机器学习 理论计算机科学 图像(数学) 计算机网络
作者
Juan Wang,Zetao Zhang,Minghu Wu,Yonggang Ye,Sheng Wang,Ye Cao,Hao Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107622-107622 被引量:7
标识
DOI:10.1016/j.compbiomed.2023.107622
摘要

Nucleus instance segmentation is an important task in medical image analysis involving cell-level pathological analysis and is of great significance for many biomedical applications, such as disease diagnosis and drug screening. However, the high-density and tight-contact between cells is a common feature of most cell images, which poses a great technical challenge for nuclei instance segmentation. The latest research focuses on CNN-based methods for nuclei instance segmentation, which typically rely on bounding box regression and non-maximum suppression to locate nuclei. However, this frequently results in poor local bounding boxes for nuclei that are adhered or clustered together. In response to the challenges of high-density and tight-contact in cellular images, we propose a novel end-to-end nuclei instance segmentation model. Specifically, we first employ the Swin Transformer as the backbone network of our model, which captures global multi-scale information by combining the global modelling capability of transformers and the local modelling capability of convolutional neural networks (CNNs). Additionally, we integrate a graph convolutional feature fusion module (GCFM), that combines deep and shallow features to learn an affinity matrix. The module also adopts graph convolution to guide the network in learning the object-level local information. Finally, we design a hybrid dilated convolution module (HDC) and insert it into the backbone network to enhance the contextual information over a large range. These components assist the network in extracting rich features. The experimental results demonstrate that our algorithm outperforms several state-of-the-art models on the DSB2018 and LIVECell datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MaxwellZH完成签到,获得积分10
刚刚
spider534完成签到,获得积分10
1秒前
霡霂完成签到,获得积分10
1秒前
Akim应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
量子咸鱼K完成签到,获得积分10
2秒前
PaperCrane完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
徐彬荣完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
fate完成签到,获得积分10
2秒前
hahaha1完成签到,获得积分10
2秒前
小小油完成签到,获得积分10
2秒前
冰冻芋头完成签到,获得积分10
3秒前
寒鸦完成签到,获得积分10
4秒前
XU博士完成签到 ,获得积分10
5秒前
消消乐完成签到 ,获得积分10
7秒前
77完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
欢呼亦绿完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
16秒前
干净的雅青完成签到,获得积分10
18秒前
liufan完成签到 ,获得积分10
18秒前
共享精神应助Legend采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
zw发布了新的文献求助10
22秒前
天凉王破完成签到 ,获得积分10
23秒前
无花果应助Gary采纳,获得30
24秒前
GRATE完成签到 ,获得积分10
25秒前
hy完成签到 ,获得积分10
27秒前
baoxiaozhai完成签到 ,获得积分0
28秒前
我心本无泪完成签到,获得积分10
29秒前
2041完成签到,获得积分10
29秒前
30秒前
窗窗窗雨完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936