CALM: An Enhanced Encoding and Confidence Evaluating Framework for Trustworthy Multi-view Learning

计算机科学 机器学习 人工智能 可信赖性 稳健性(进化) 杠杆(统计) 编码(内存) 正规化(语言学) 数据挖掘 计算机安全 生物化学 基因 化学
作者
Hai Zhou,Zhe Xue,Yitong Liu,Boang Li,Junping Du,Meiyu Liang,Yuankai Qi
标识
DOI:10.1145/3581783.3611965
摘要

Multi-view learning aims to leverage data acquired from multiple sources to achieve better performance compared to using a single view. However, the performance of multi-view learning can be negatively impacted by noisy or corrupted views in certain real-world situations. As a result, it is crucial to assess the confidence of predictions and obtain reliable learning outcomes. In this paper, we introduce CALM, an enhanced encoding and confidence evaluation framework for trustworthy multi-view classification. Our method comprises enhanced multi-view encoding, multi-view confidence-aware fusion, and multi-view classification regularization, enabling the simultaneous evaluation of prediction confidence and the yielding trustworthy classifications. Enhanced multi-view encoding takes advantage of cross-view consistency and class diversity to improve the efficacy of the learned latent representation, facilitating more reliable classification results. Multi-view confidence-aware fusion utilizes a confidence-aware estimator to evaluate the confidence scores of classification outcomes. The final multi-view classification results are then derived through confidence-aware fusion. To achieve reliable and accurate confidence scores, multivariate Gaussian distributions are employed to model the prediction distribution. The advantage of CALM lies in its ability to evaluate the quality of each view, reducing the influence of low-quality views on the multi-view fusion process and ultimately leading to improved classification performance and confidence evaluation. Comprehensive experimental results demonstrate that our method outperforms other trusted multi-view learning methods in terms of effectiveness, reliability, and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
蔓子哥发布了新的文献求助10
1秒前
特昂唐完成签到,获得积分10
1秒前
科目三应助XUU采纳,获得10
1秒前
怅神霄而避光完成签到,获得积分10
2秒前
隐形曼青应助wu采纳,获得10
2秒前
3秒前
复杂白凡发布了新的文献求助10
3秒前
3秒前
5秒前
anna1992发布了新的文献求助10
6秒前
MM发布了新的文献求助10
7秒前
zjiang发布了新的文献求助30
7秒前
Anoxia完成签到,获得积分20
8秒前
乐乐应助Impurity采纳,获得10
8秒前
ppppp完成签到,获得积分10
9秒前
Anoxia发布了新的文献求助10
9秒前
暴躁麻瓜发布了新的文献求助10
10秒前
Skyyi发布了新的文献求助20
10秒前
ztxiehhh发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
桐桐应助ZHQ采纳,获得10
13秒前
14秒前
SciGPT应助白金之星采纳,获得10
14秒前
雷霆康康完成签到,获得积分10
14秒前
15秒前
qio一眼发布了新的文献求助30
15秒前
斐_应助幸福大白采纳,获得10
15秒前
辛普森发布了新的文献求助10
17秒前
eva发布了新的文献求助10
17秒前
清澄完成签到,获得积分10
17秒前
我不吃葱发布了新的文献求助10
17秒前
付一谷完成签到,获得积分10
17秒前
19秒前
神勇的归尘完成签到 ,获得积分10
20秒前
Yi完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159473
求助须知:如何正确求助?哪些是违规求助? 2810505
关于积分的说明 7888418
捐赠科研通 2469473
什么是DOI,文献DOI怎么找? 1314873
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012