CALM: An Enhanced Encoding and Confidence Evaluating Framework for Trustworthy Multi-view Learning

计算机科学 机器学习 人工智能 可信赖性 稳健性(进化) 杠杆(统计) 编码(内存) 正规化(语言学) 置信区间 数据挖掘 统计 数学 计算机安全 生物化学 基因 化学
作者
Hai Zhou,Zhe Xue,Ying Liu,Boang Li,Junping Du,Meiyu Liang,Yuankai Qi
标识
DOI:10.1145/3581783.3611965
摘要

Multi-view learning aims to leverage data acquired from multiple sources to achieve better performance compared to using a single view. However, the performance of multi-view learning can be negatively impacted by noisy or corrupted views in certain real-world situations. As a result, it is crucial to assess the confidence of predictions and obtain reliable learning outcomes. In this paper, we introduce CALM, an enhanced encoding and confidence evaluation framework for trustworthy multi-view classification. Our method comprises enhanced multi-view encoding, multi-view confidence-aware fusion, and multi-view classification regularization, enabling the simultaneous evaluation of prediction confidence and the yielding trustworthy classifications. Enhanced multi-view encoding takes advantage of cross-view consistency and class diversity to improve the efficacy of the learned latent representation, facilitating more reliable classification results. Multi-view confidence-aware fusion utilizes a confidence-aware estimator to evaluate the confidence scores of classification outcomes. The final multi-view classification results are then derived through confidence-aware fusion. To achieve reliable and accurate confidence scores, multivariate Gaussian distributions are employed to model the prediction distribution. The advantage of CALM lies in its ability to evaluate the quality of each view, reducing the influence of low-quality views on the multi-view fusion process and ultimately leading to improved classification performance and confidence evaluation. Comprehensive experimental results demonstrate that our method outperforms other trusted multi-view learning methods in terms of effectiveness, reliability, and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋小威完成签到,获得积分10
刚刚
嘴巴张大一点完成签到,获得积分10
1秒前
十二完成签到,获得积分10
2秒前
2秒前
大反应釜发布了新的文献求助10
2秒前
haha0329发布了新的文献求助10
2秒前
orixero应助tuski采纳,获得10
2秒前
6秒前
7秒前
彭于晏应助风趣的灵枫采纳,获得10
8秒前
8秒前
May应助YXT1998采纳,获得20
8秒前
9秒前
小桥流人完成签到 ,获得积分10
10秒前
11秒前
12秒前
饭团完成签到,获得积分10
13秒前
国色不染尘完成签到,获得积分10
13秒前
14秒前
gy完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
李1完成签到,获得积分10
16秒前
猪儿虫发布了新的文献求助10
16秒前
段启瑞完成签到,获得积分10
17秒前
彭于晏应助HHH采纳,获得10
18秒前
共享精神应助郑zhenglanyou采纳,获得10
18秒前
19秒前
19秒前
tuski发布了新的文献求助10
19秒前
Fun完成签到,获得积分10
20秒前
盼着毕业的研究牲完成签到,获得积分10
21秒前
22秒前
科研通AI2S应助拾新采纳,获得10
22秒前
22秒前
kimon完成签到,获得积分10
23秒前
yenist完成签到,获得积分10
23秒前
24秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032