Early Prognostication of Critical Patients With Spinal Cord Injury

医学 分类器(UML) 人工智能 机器学习 曲线下面积 重症监护 重症监护室 内科学 计算机科学 重症监护医学
作者
Guoxin Fan,Huaqing Liu,Sheng Yang,Libo Luo,Mao Pang,Bin Liu,Liangming Zhang,Lanqing Han,Limin Rong,Xiang Liao
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:49 (11): 754-762 被引量:2
标识
DOI:10.1097/brs.0000000000004861
摘要

Study Design. A retrospective case-series. Objective. The study aims to use machine learning to predict the discharge destination of spinal cord injury (SCI) patients in the intensive care unit. Summary of Background Data. Prognostication following SCI is vital, especially for critical patients who need intensive care. Patients and Methods. Clinical data of patients diagnosed with SCI were extracted from a publicly available intensive care unit database. The first recorded data of the included patients were used to develop a total of 98 machine learning classifiers, seeking to predict discharge destination (eg, death, further medical care, home, etc.). The microaverage area under the curve (AUC) was the main indicator to assess discrimination. The best average-AUC classifier and the best death-sensitivity classifier were integrated into an ensemble classifier. The discrimination of the ensemble classifier was compared with top death-sensitivity classifiers and top average-AUC classifiers. In addition, prediction consistency and clinical utility were also assessed. Results. A total of 1485 SCI patients were included. The ensemble classifier had a microaverage AUC of 0.851, which was only slightly inferior to the best average-AUC classifier ( P =0.10). The best average-AUC classifier death sensitivity was much lower than that of the ensemble classifier. The ensemble classifier had a death sensitivity of 0.452, which was inferior to the top 8 death-sensitivity classifiers, whose microaverage AUC were inferior to the ensemble classifier ( P <0.05). In addition, the ensemble classifier demonstrated a comparable Brier score and superior net benefit in the DCA when compared with the performance of the origin classifiers. Conclusions. The ensemble classifier shows an overall superior performance in predicting discharge destination, considering discrimination ability, prediction consistency, and clinical utility. This classifier system may aid in the clinical management of critical SCI patients in the early phase following injury. Level of Evidence: Level 3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzZ发布了新的文献求助10
刚刚
ike发布了新的文献求助200
2秒前
电磁波完成签到,获得积分20
6秒前
李不慌完成签到,获得积分10
7秒前
7秒前
hhhh完成签到 ,获得积分10
9秒前
领导范儿应助小象采纳,获得10
10秒前
Edison完成签到,获得积分10
12秒前
清新发布了新的文献求助10
13秒前
跳跃的香完成签到,获得积分10
14秒前
JamesPei应助xiaoyu采纳,获得10
15秒前
16秒前
完美世界应助okei采纳,获得10
16秒前
Shayulajiao发布了新的文献求助30
16秒前
Akim应助Edison采纳,获得10
17秒前
18秒前
wzZ完成签到,获得积分10
18秒前
19秒前
20秒前
22秒前
米糊发布了新的文献求助10
22秒前
毛豆应助mermer采纳,获得10
23秒前
Jonathan发布了新的文献求助10
23秒前
nonTUT发布了新的文献求助10
23秒前
yy完成签到,获得积分20
24秒前
24秒前
26秒前
今时今日发布了新的文献求助30
28秒前
yy发布了新的文献求助30
28秒前
CipherSage应助nonTUT采纳,获得10
30秒前
调研昵称发布了新的文献求助10
30秒前
wanghuan发布了新的文献求助10
31秒前
FashionBoy应助brownnose采纳,获得10
33秒前
虹归于叶完成签到 ,获得积分10
33秒前
纯真的雨完成签到 ,获得积分10
35秒前
小海完成签到,获得积分10
35秒前
清爽水彤完成签到 ,获得积分10
36秒前
赘婿应助健忘的白秋采纳,获得10
37秒前
潘小辰完成签到,获得积分10
38秒前
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458942
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037299
捐赠科研通 2742793
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694553