Spatial Bias for attention-free non-local neural networks

计算机科学 卷积神经网络 人工智能 人工神经网络 特征(语言学) 卷积(计算机科学) 模式识别(心理学) 深度学习 机器学习 空间分析 过程(计算) 数学 哲学 语言学 统计 操作系统
作者
Junhyung Go,Jongbin Ryu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122053-122053
标识
DOI:10.1016/j.eswa.2023.122053
摘要

In this paper, we introduce the Spatial Bias to learn global knowledge without self-attention in convolutional neural networks. Owing to the limited receptive field, conventional convolutional neural networks suffer from learning long-range dependencies. Non-local neural networks have struggled to learn global knowledge, but unavoidably have too heavy a network design due to the self-attention operation. Therefore, we propose a fast and lightweight Spatial Bias that efficiently encodes global knowledge without self-attention on convolutional neural networks. Spatial Bias is stacked on the feature map and convolved together to adjust the spatial structure of the convolutional features. Because we only use the convolution operation in this process, ours is lighter and faster than traditional methods based on the heavy self-attention operation. Therefore, we learn the global knowledge on the convolution layer directly with very few additional resources. Our method is very fast and lightweight due to the attention-free non-local method while improving the performance of neural networks considerably. Compared to non-local neural networks, the Spatial Bias use about ×10 times fewer parameters while achieving comparable performance with 1.6∼3.3 times more throughput on a very little budget. Furthermore, the Spatial Bias can be used with conventional non-local neural networks to further improve the performance of the backbone model. We show that the Spatial Bias achieves competitive performance that improves the classification accuracy by +0.79% and +1.5% on ImageNet-1K and CIFAR-100 datasets. Additionally, we validate our method on the MS-COCO and ADE20K datasets for downstream tasks involving object detection and semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jing发布了新的文献求助10
刚刚
阿木木完成签到,获得积分10
1秒前
如初发布了新的文献求助20
1秒前
2秒前
崔静宇完成签到,获得积分10
2秒前
优雅灵波完成签到,获得积分10
3秒前
3秒前
tachikoma关注了科研通微信公众号
5秒前
宇文思发布了新的文献求助10
5秒前
顾矜应助cheers采纳,获得10
5秒前
keyanzhangxiao给keyanzhangxiao的求助进行了留言
5秒前
8秒前
10秒前
LI发布了新的文献求助10
10秒前
10秒前
gabee完成签到 ,获得积分10
12秒前
RYAN完成签到 ,获得积分10
13秒前
13秒前
Dc发布了新的文献求助10
14秒前
Nitric_Oxide应助专一的白凝采纳,获得20
16秒前
16秒前
清爽的恋风完成签到,获得积分10
16秒前
沈佳琪发布了新的文献求助10
18秒前
Dc完成签到,获得积分10
19秒前
19秒前
华仔应助一一采纳,获得10
19秒前
腼腆的绝山完成签到,获得积分20
20秒前
脑洞疼应助Wenpandaen采纳,获得10
20秒前
20秒前
21秒前
跳跃尔琴发布了新的文献求助10
21秒前
所所应助虚幻皮卡丘采纳,获得10
22秒前
科研通AI2S应助成就馒头采纳,获得10
25秒前
25秒前
LI完成签到,获得积分10
26秒前
乐乐应助雨霖铃采纳,获得10
28秒前
29秒前
科研通AI2S应助丽丽采纳,获得10
30秒前
32秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134917
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774138
捐赠科研通 2441635
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825