Multimodal Brain Age Estimation Using Interpretable Adaptive Population-Graph Learning

可解释性 计算机科学 神经影像学 图形 人工智能 人口 功率图分析 机器学习 模式识别(心理学) 理论计算机科学 神经科学 人口学 社会学 生物
作者
Kyriaki-Margarita Bintsi,Vasileios Baltatzis,Rolandos Alexandros Potamias,Alexander Hammers,Daniel Rueckert
出处
期刊:Lecture Notes in Computer Science 卷期号:: 195-204 被引量:1
标识
DOI:10.1007/978-3-031-43993-3_19
摘要

Brain age estimation is clinically important as it can provide valuable information in the context of neurodegenerative diseases such as Alzheimer’s. Population graphs, which include multimodal imaging information of the subjects along with the relationships among the population, have been used in literature along with Graph Convolutional Networks (GCNs) and have proved beneficial for a variety of medical imaging tasks. A population graph is usually static and constructed manually using non-imaging information. However, graph construction is not a trivial task and might significantly affect the performance of the GCN, which is inherently very sensitive to the graph structure. In this work, we propose a framework that learns a population graph structure optimized for the downstream task. An attention mechanism assigns weights to a set of imaging and non-imaging features (phenotypes), which are then used for edge extraction. The resulting graph is used to train the GCN. The entire pipeline can be trained end-to-end. Additionally, by visualizing the attention weights that were the most important for the graph construction, we increase the interpretability of the graph. We use the UK Biobank, which provides a large variety of neuroimaging and non-imaging phenotypes, to evaluate our method on brain age regression and classification. The proposed method outperforms competing static graph approaches and other state-of-the-art adaptive methods. We further show that the assigned attention scores indicate that there are both imaging and non-imaging phenotypes that are informative for brain age estimation and are in agreement with the relevant literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
B站萧亚轩发布了新的文献求助30
1秒前
情怀应助一天五顿饭采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
3秒前
clientprogram应助科研通管家采纳,获得40
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Amu1uu应助科研通管家采纳,获得10
3秒前
勤劳冰烟应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
汉堡包应助刘刘采纳,获得10
4秒前
陈好好完成签到 ,获得积分10
5秒前
7秒前
山野村夫应助Yy采纳,获得10
9秒前
yang完成签到,获得积分10
10秒前
10秒前
可爱的函函应助CYXH采纳,获得10
11秒前
星禾吾发布了新的文献求助10
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
一天五顿饭完成签到,获得积分10
14秒前
Yuanyuan发布了新的文献求助20
14秒前
15秒前
sara发布了新的文献求助10
18秒前
PCRmachine发布了新的文献求助30
19秒前
清爽电脑完成签到,获得积分10
20秒前
silencegreen5发布了新的文献求助10
21秒前
23秒前
23秒前
26秒前
26秒前
27秒前
27秒前
PCRmachine完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952472
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11089109
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309