Multimodal Brain Age Estimation Using Interpretable Adaptive Population-Graph Learning

可解释性 计算机科学 神经影像学 图形 人工智能 人口 功率图分析 机器学习 模式识别(心理学) 理论计算机科学 神经科学 人口学 社会学 生物
作者
Kyriaki-Margarita Bintsi,Vasileios Baltatzis,Rolandos Alexandros Potamias,Alexander Hammers,Daniel Rueckert
出处
期刊:Lecture Notes in Computer Science 卷期号:: 195-204 被引量:1
标识
DOI:10.1007/978-3-031-43993-3_19
摘要

Brain age estimation is clinically important as it can provide valuable information in the context of neurodegenerative diseases such as Alzheimer’s. Population graphs, which include multimodal imaging information of the subjects along with the relationships among the population, have been used in literature along with Graph Convolutional Networks (GCNs) and have proved beneficial for a variety of medical imaging tasks. A population graph is usually static and constructed manually using non-imaging information. However, graph construction is not a trivial task and might significantly affect the performance of the GCN, which is inherently very sensitive to the graph structure. In this work, we propose a framework that learns a population graph structure optimized for the downstream task. An attention mechanism assigns weights to a set of imaging and non-imaging features (phenotypes), which are then used for edge extraction. The resulting graph is used to train the GCN. The entire pipeline can be trained end-to-end. Additionally, by visualizing the attention weights that were the most important for the graph construction, we increase the interpretability of the graph. We use the UK Biobank, which provides a large variety of neuroimaging and non-imaging phenotypes, to evaluate our method on brain age regression and classification. The proposed method outperforms competing static graph approaches and other state-of-the-art adaptive methods. We further show that the assigned attention scores indicate that there are both imaging and non-imaging phenotypes that are informative for brain age estimation and are in agreement with the relevant literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱玩的泡菜鱼完成签到,获得积分20
刚刚
刚刚
高大凌寒应助光亮友安采纳,获得10
刚刚
kailash发布了新的文献求助30
刚刚
巴基斯坦农民完成签到,获得积分20
1秒前
Phi.Wang发布了新的文献求助10
1秒前
Treasure完成签到,获得积分10
2秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
浅尝离白应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
279完成签到,获得积分10
3秒前
zyfqpc应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
思源应助chen采纳,获得10
4秒前
4秒前
听风暖发布了新的文献求助10
4秒前
甜甜寒香发布了新的文献求助10
5秒前
孤梦落雨发布了新的文献求助10
5秒前
啦啦啦发布了新的文献求助10
5秒前
甜甜玫瑰应助热情的戾采纳,获得10
6秒前
7秒前
xueqinwu完成签到,获得积分10
7秒前
科研通AI2S应助ark861023采纳,获得10
8秒前
逸晨发布了新的文献求助10
8秒前
华仔应助追寻紫安采纳,获得10
8秒前
9秒前
9秒前
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144703
求助须知:如何正确求助?哪些是违规求助? 2796148
关于积分的说明 7818215
捐赠科研通 2452316
什么是DOI,文献DOI怎么找? 1304935
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449