Malt quality profile of barley predicted by near‐infrared spectroscopy using partial least squares, Bayesian regression, and artificial neural network models

偏最小二乘回归 贝叶斯概率 特征选择 化学计量学 统计 数学 人工智能 决定系数 计算机科学 模式识别(心理学) 机器学习
作者
Oyeyemi O. Ajayi,Lanre Akinyemi,Sikiru Adeniyi Atanda,Jason G. Walling,Ramamurthy Mahalingam
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:37 (12) 被引量:1
标识
DOI:10.1002/cem.3519
摘要

Abstract Due to the significant cost and time involved in identifying barley lines with superior malting quality, the malting industry is searching for accurate and rapid methods to expedite the selection of superior barley lines that meet breeder's goals. The aim of this study is to compare partial least squares regression (PLSR) with advanced statistical models (Bayesian and machine learning) and reliably assess their performance in predicting malt quality traits from near infra‐red (NIR) spectral data using barley grains. Using spectral data as predictors and the malt quality traits as references, PLSR outperformed Bayesian and PCA‐ANN models for diastatic power (DP), alpha amylase (AA), malt extract (ME), wort protein (WP), soluble to total protein (S/T) ratio, and free amino nitrogen (FAN). WP had the best prediction performance for all models, with the best‐performing model, PLSR, having (RPD) values of 0.55 (1.5). The influential wavelength regions identified based on the variable importance in projection (VIP) scores and coefficient estimates for PLSR and Bayesian models, respectively, were comparatively similar for all malt quality traits. Based on these findings, PLSR analysis and wavelength selection techniques would enhance the future design and optimization of NIR prediction models in malt quality improvement programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助10
刚刚
刚刚
华仔应助留胡子的青柏采纳,获得10
刚刚
刚刚
建丰完成签到,获得积分10
1秒前
1秒前
乐乐应助宗笑晴采纳,获得10
1秒前
拼搏太英完成签到,获得积分10
1秒前
2秒前
susu发布了新的文献求助200
2秒前
4秒前
loveyouxkkt应助韦老虎采纳,获得30
4秒前
小蘑菇应助含糊采纳,获得10
5秒前
深情安青应助狂野觅云采纳,获得10
5秒前
鉴定为寄发布了新的文献求助30
6秒前
夜白举报无奈的浩宇求助涉嫌违规
6秒前
6秒前
7秒前
跳跃尔容发布了新的文献求助10
7秒前
青山发布了新的文献求助26
7秒前
7秒前
Agernon应助韦老虎采纳,获得10
8秒前
沉默沛岚发布了新的文献求助30
8秒前
8秒前
程程发布了新的文献求助10
8秒前
晨安发布了新的文献求助10
9秒前
9秒前
橙子完成签到,获得积分10
9秒前
9秒前
DrYang发布了新的文献求助10
9秒前
10秒前
哈哈大笑完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
特兰克斯发布了新的文献求助10
12秒前
危机的尔蝶完成签到,获得积分10
12秒前
mcsmdxs发布了新的文献求助10
13秒前
ccalvintan发布了新的文献求助10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762