Malt quality profile of barley predicted by near‐infrared spectroscopy using partial least squares, Bayesian regression, and artificial neural network models

偏最小二乘回归 贝叶斯概率 特征选择 化学计量学 统计 数学 人工智能 决定系数 计算机科学 模式识别(心理学) 机器学习
作者
Oyeyemi O. Ajayi,Lanre Akinyemi,Sikiru Adeniyi Atanda,Jason G. Walling,Ramamurthy Mahalingam
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:37 (12) 被引量:5
标识
DOI:10.1002/cem.3519
摘要

Abstract Due to the significant cost and time involved in identifying barley lines with superior malting quality, the malting industry is searching for accurate and rapid methods to expedite the selection of superior barley lines that meet breeder's goals. The aim of this study is to compare partial least squares regression (PLSR) with advanced statistical models (Bayesian and machine learning) and reliably assess their performance in predicting malt quality traits from near infra‐red (NIR) spectral data using barley grains. Using spectral data as predictors and the malt quality traits as references, PLSR outperformed Bayesian and PCA‐ANN models for diastatic power (DP), alpha amylase (AA), malt extract (ME), wort protein (WP), soluble to total protein (S/T) ratio, and free amino nitrogen (FAN). WP had the best prediction performance for all models, with the best‐performing model, PLSR, having (RPD) values of 0.55 (1.5). The influential wavelength regions identified based on the variable importance in projection (VIP) scores and coefficient estimates for PLSR and Bayesian models, respectively, were comparatively similar for all malt quality traits. Based on these findings, PLSR analysis and wavelength selection techniques would enhance the future design and optimization of NIR prediction models in malt quality improvement programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子发布了新的文献求助10
1秒前
安山完成签到 ,获得积分10
1秒前
xx发布了新的文献求助10
1秒前
爆米花应助雷帝3采纳,获得10
2秒前
3秒前
3秒前
睿0924完成签到,获得积分20
3秒前
4秒前
效果发布了新的文献求助10
4秒前
自然的电源完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
大个应助六花采纳,获得20
6秒前
126发布了新的文献求助10
7秒前
lance完成签到,获得积分10
7秒前
8秒前
背后的斑马完成签到,获得积分10
8秒前
8秒前
浮游应助奕奕采纳,获得10
8秒前
Prowler完成签到,获得积分20
9秒前
9秒前
up完成签到,获得积分10
9秒前
小羊咩咩发布了新的文献求助10
10秒前
HanZhang发布了新的文献求助10
11秒前
含蓄的梦曼完成签到,获得积分20
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
11秒前
结实智宸应助科研通管家采纳,获得10
12秒前
roccc完成签到,获得积分10
12秒前
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
天天快乐应助霜降采纳,获得10
12秒前
所所应助伍子胥采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
油桃应助科研通管家采纳,获得20
12秒前
浮游应助科研通管家采纳,获得10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205400
求助须知:如何正确求助?哪些是违规求助? 4384092
关于积分的说明 13652042
捐赠科研通 4242237
什么是DOI,文献DOI怎么找? 2327262
邀请新用户注册赠送积分活动 1325047
关于科研通互助平台的介绍 1277269