清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MSE-Nets: Multi-annotated Semi-supervised Ensemble Networks for Improving Segmentation of Medical Image with Ambiguous Boundaries

计算机科学 注释 分割 雅卡索引 一致性(知识库) 人工智能 成对比较 模式识别(心理学) 基线(sea) 机器学习 数据挖掘 海洋学 地质学
作者
Shuai Wang,Tengjin Weng,Jingyi Wang,Yang Shen,Zhidong Zhao,Yixiu Liu,Pengfei Jiao,Zhiming Cheng,Qianni Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.10380
摘要

Medical image segmentation annotations exhibit variations among experts due to the ambiguous boundaries of segmented objects and backgrounds in medical images. Although using multiple annotations for each image in the fully-supervised has been extensively studied for training deep models, obtaining a large amount of multi-annotated data is challenging due to the substantial time and manpower costs required for segmentation annotations, resulting in most images lacking any annotations. To address this, we propose Multi-annotated Semi-supervised Ensemble Networks (MSE-Nets) for learning segmentation from limited multi-annotated and abundant unannotated data. Specifically, we introduce the Network Pairwise Consistency Enhancement (NPCE) module and Multi-Network Pseudo Supervised (MNPS) module to enhance MSE-Nets for the segmentation task by considering two major factors: (1) to optimize the utilization of all accessible multi-annotated data, the NPCE separates (dis)agreement annotations of multi-annotated data at the pixel level and handles agreement and disagreement annotations in different ways, (2) to mitigate the introduction of imprecise pseudo-labels, the MNPS extends the training data by leveraging consistent pseudo-labels from unannotated data. Finally, we improve confidence calibration by averaging the predictions of base networks. Experiments on the ISIC dataset show that we reduced the demand for multi-annotated data by 97.75\% and narrowed the gap with the best fully-supervised baseline to just a Jaccard index of 4\%. Furthermore, compared to other semi-supervised methods that rely only on a single annotation or a combined fusion approach, the comprehensive experimental results on ISIC and RIGA datasets demonstrate the superior performance of our proposed method in medical image segmentation with ambiguous boundaries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松幼南完成签到 ,获得积分10
34秒前
shhoing应助科研通管家采纳,获得10
1分钟前
npknpk完成签到,获得积分10
1分钟前
Orange应助Ajay采纳,获得30
1分钟前
雪山飞龙完成签到,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
Ajay完成签到 ,获得积分10
3分钟前
Klaus完成签到 ,获得积分10
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
方白秋完成签到,获得积分0
3分钟前
3分钟前
Ajay发布了新的文献求助30
4分钟前
CipherSage应助丽海张采纳,获得30
4分钟前
赵一完成签到 ,获得积分10
4分钟前
4分钟前
Prometheusss发布了新的文献求助10
4分钟前
丽海张发布了新的文献求助30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
英姑应助科研通管家采纳,获得10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
文静身边充满小确幸完成签到 ,获得积分10
5分钟前
5分钟前
Prometheusss发布了新的文献求助10
5分钟前
Prometheusss完成签到,获得积分10
5分钟前
5分钟前
深海理疗发布了新的文献求助10
5分钟前
al完成签到 ,获得积分0
6分钟前
Prometheusss发布了新的文献求助10
6分钟前
下文献的蜉蝣完成签到 ,获得积分10
6分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
洁净百川完成签到 ,获得积分10
7分钟前
7分钟前
Prometheusss发布了新的文献求助10
7分钟前
fufufu123完成签到 ,获得积分10
8分钟前
nuoberry发布了新的文献求助30
8分钟前
景安白完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561583
求助须知:如何正确求助?哪些是违规求助? 4646662
关于积分的说明 14678756
捐赠科研通 4588002
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490549
关于科研通互助平台的介绍 1461583