MSE-Nets: Multi-annotated Semi-supervised Ensemble Networks for Improving Segmentation of Medical Image with Ambiguous Boundaries

计算机科学 注释 分割 雅卡索引 一致性(知识库) 人工智能 成对比较 模式识别(心理学) 基线(sea) 机器学习 数据挖掘 海洋学 地质学
作者
Shuai Wang,Tengjin Weng,Jingyi Wang,Yang Shen,Zhidong Zhao,Yixiu Liu,Pengfei Jiao,Zhiming Cheng,Qianni Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.10380
摘要

Medical image segmentation annotations exhibit variations among experts due to the ambiguous boundaries of segmented objects and backgrounds in medical images. Although using multiple annotations for each image in the fully-supervised has been extensively studied for training deep models, obtaining a large amount of multi-annotated data is challenging due to the substantial time and manpower costs required for segmentation annotations, resulting in most images lacking any annotations. To address this, we propose Multi-annotated Semi-supervised Ensemble Networks (MSE-Nets) for learning segmentation from limited multi-annotated and abundant unannotated data. Specifically, we introduce the Network Pairwise Consistency Enhancement (NPCE) module and Multi-Network Pseudo Supervised (MNPS) module to enhance MSE-Nets for the segmentation task by considering two major factors: (1) to optimize the utilization of all accessible multi-annotated data, the NPCE separates (dis)agreement annotations of multi-annotated data at the pixel level and handles agreement and disagreement annotations in different ways, (2) to mitigate the introduction of imprecise pseudo-labels, the MNPS extends the training data by leveraging consistent pseudo-labels from unannotated data. Finally, we improve confidence calibration by averaging the predictions of base networks. Experiments on the ISIC dataset show that we reduced the demand for multi-annotated data by 97.75\% and narrowed the gap with the best fully-supervised baseline to just a Jaccard index of 4\%. Furthermore, compared to other semi-supervised methods that rely only on a single annotation or a combined fusion approach, the comprehensive experimental results on ISIC and RIGA datasets demonstrate the superior performance of our proposed method in medical image segmentation with ambiguous boundaries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
从容如曼完成签到,获得积分10
刚刚
1秒前
1秒前
满意发布了新的文献求助10
2秒前
好好好发布了新的文献求助10
2秒前
思源应助外向渊思采纳,获得10
2秒前
3秒前
3秒前
伯。完成签到 ,获得积分10
4秒前
4秒前
bkagyin应助葛起彤采纳,获得10
4秒前
5秒前
5秒前
KTy发布了新的文献求助10
6秒前
乐乐应助陶月慧采纳,获得10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
xz发布了新的文献求助20
7秒前
大模型应助失眠的珩采纳,获得10
7秒前
7秒前
科研通AI2S应助阳光的星月采纳,获得10
8秒前
8秒前
自由怜阳完成签到 ,获得积分10
8秒前
9秒前
简单平蓝发布了新的文献求助10
9秒前
qiqi完成签到,获得积分20
10秒前
10秒前
丘比特应助OrthoDW采纳,获得10
10秒前
10秒前
刘慧鑫发布了新的文献求助10
11秒前
NexusExplorer应助烟火微尘采纳,获得10
11秒前
11秒前
11秒前
yx发布了新的文献求助10
11秒前
77完成签到 ,获得积分10
11秒前
11秒前
12秒前
27完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004855
求助须知:如何正确求助?哪些是违规求助? 4248723
关于积分的说明 13238119
捐赠科研通 4048225
什么是DOI,文献DOI怎么找? 2214805
邀请新用户注册赠送积分活动 1224679
关于科研通互助平台的介绍 1145131