MSE-Nets: Multi-annotated Semi-supervised Ensemble Networks for Improving Segmentation of Medical Image with Ambiguous Boundaries

计算机科学 注释 分割 雅卡索引 一致性(知识库) 人工智能 成对比较 模式识别(心理学) 基线(sea) 机器学习 数据挖掘 海洋学 地质学
作者
Shuai Wang,Tengjin Weng,Jingyi Wang,Yang Shen,Zhidong Zhao,Yixiu Liu,Pengfei Jiao,Zhiming Cheng,Qianni Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.10380
摘要

Medical image segmentation annotations exhibit variations among experts due to the ambiguous boundaries of segmented objects and backgrounds in medical images. Although using multiple annotations for each image in the fully-supervised has been extensively studied for training deep models, obtaining a large amount of multi-annotated data is challenging due to the substantial time and manpower costs required for segmentation annotations, resulting in most images lacking any annotations. To address this, we propose Multi-annotated Semi-supervised Ensemble Networks (MSE-Nets) for learning segmentation from limited multi-annotated and abundant unannotated data. Specifically, we introduce the Network Pairwise Consistency Enhancement (NPCE) module and Multi-Network Pseudo Supervised (MNPS) module to enhance MSE-Nets for the segmentation task by considering two major factors: (1) to optimize the utilization of all accessible multi-annotated data, the NPCE separates (dis)agreement annotations of multi-annotated data at the pixel level and handles agreement and disagreement annotations in different ways, (2) to mitigate the introduction of imprecise pseudo-labels, the MNPS extends the training data by leveraging consistent pseudo-labels from unannotated data. Finally, we improve confidence calibration by averaging the predictions of base networks. Experiments on the ISIC dataset show that we reduced the demand for multi-annotated data by 97.75\% and narrowed the gap with the best fully-supervised baseline to just a Jaccard index of 4\%. Furthermore, compared to other semi-supervised methods that rely only on a single annotation or a combined fusion approach, the comprehensive experimental results on ISIC and RIGA datasets demonstrate the superior performance of our proposed method in medical image segmentation with ambiguous boundaries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助陈肖楠采纳,获得10
刚刚
彭于晏应助sssshhh采纳,获得10
刚刚
aa完成签到,获得积分10
刚刚
刚刚
可爱的函函应助Lei采纳,获得10
1秒前
小二郎应助帅气小猫咪采纳,获得10
1秒前
1秒前
糊涂涂完成签到,获得积分10
1秒前
大个应助飞飞采纳,获得10
2秒前
2秒前
博思好行发布了新的文献求助10
2秒前
大白薯完成签到,获得积分10
3秒前
3秒前
文青完成签到,获得积分10
3秒前
微笑笑萍发布了新的文献求助10
3秒前
花花完成签到,获得积分10
4秒前
风中的听白完成签到 ,获得积分10
4秒前
4秒前
甜甜亦丝发布了新的文献求助10
4秒前
4秒前
万能图书馆应助高媛采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
哭泣青烟完成签到 ,获得积分10
5秒前
5秒前
ljz910005发布了新的文献求助20
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
震动的嘉懿完成签到 ,获得积分20
6秒前
ShuY发布了新的文献求助10
6秒前
一二发布了新的文献求助30
6秒前
英姑应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
CHINA_C13发布了新的文献求助10
6秒前
em0应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助STDRM采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403