MSE-Nets: Multi-annotated Semi-supervised Ensemble Networks for Improving Segmentation of Medical Image with Ambiguous Boundaries

计算机科学 注释 分割 雅卡索引 一致性(知识库) 人工智能 成对比较 模式识别(心理学) 基线(sea) 机器学习 数据挖掘 海洋学 地质学
作者
Shuai Wang,Tengjin Weng,Jingyi Wang,Yang Shen,Zhidong Zhao,Yixiu Liu,Pengfei Jiao,Zhiming Cheng,Qianni Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.10380
摘要

Medical image segmentation annotations exhibit variations among experts due to the ambiguous boundaries of segmented objects and backgrounds in medical images. Although using multiple annotations for each image in the fully-supervised has been extensively studied for training deep models, obtaining a large amount of multi-annotated data is challenging due to the substantial time and manpower costs required for segmentation annotations, resulting in most images lacking any annotations. To address this, we propose Multi-annotated Semi-supervised Ensemble Networks (MSE-Nets) for learning segmentation from limited multi-annotated and abundant unannotated data. Specifically, we introduce the Network Pairwise Consistency Enhancement (NPCE) module and Multi-Network Pseudo Supervised (MNPS) module to enhance MSE-Nets for the segmentation task by considering two major factors: (1) to optimize the utilization of all accessible multi-annotated data, the NPCE separates (dis)agreement annotations of multi-annotated data at the pixel level and handles agreement and disagreement annotations in different ways, (2) to mitigate the introduction of imprecise pseudo-labels, the MNPS extends the training data by leveraging consistent pseudo-labels from unannotated data. Finally, we improve confidence calibration by averaging the predictions of base networks. Experiments on the ISIC dataset show that we reduced the demand for multi-annotated data by 97.75\% and narrowed the gap with the best fully-supervised baseline to just a Jaccard index of 4\%. Furthermore, compared to other semi-supervised methods that rely only on a single annotation or a combined fusion approach, the comprehensive experimental results on ISIC and RIGA datasets demonstrate the superior performance of our proposed method in medical image segmentation with ambiguous boundaries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
358489228完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
天真元冬发布了新的文献求助10
2秒前
3秒前
mystryjoker完成签到,获得积分10
3秒前
3秒前
xzjz完成签到,获得积分10
3秒前
Orange应助something采纳,获得10
3秒前
4秒前
样样完成签到,获得积分10
4秒前
wwww完成签到,获得积分20
4秒前
zuo发布了新的文献求助10
5秒前
青青子衿完成签到,获得积分10
5秒前
儒雅的夏山完成签到,获得积分10
5秒前
iuu发布了新的文献求助10
5秒前
陶征应助鸽鸽采纳,获得10
5秒前
隐形曼青应助Vi采纳,获得10
5秒前
郭百万完成签到 ,获得积分10
6秒前
研友_nqaogn发布了新的文献求助10
6秒前
Akim应助猪猪hero采纳,获得10
6秒前
田様应助cindy采纳,获得20
6秒前
受伤幻桃发布了新的文献求助10
7秒前
7秒前
7秒前
dongxuzhen完成签到,获得积分10
7秒前
香飘飘发布了新的文献求助10
7秒前
未晚发布了新的文献求助10
8秒前
Han发布了新的文献求助10
8秒前
8秒前
8秒前
小姚在忙发布了新的文献求助10
9秒前
阿雷发布了新的文献求助10
9秒前
9秒前
晨雨完成签到,获得积分10
10秒前
Cyber_relic发布了新的文献求助10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099