生物
交配
种间竞争
松材线虫
动物
嗜木菌
遗传学
线虫
进化生物学
生态学
作者
Wenyi Liu,Yinru Liu,Wei Feng-yuan,Jing Chen,Lifeng Zhou,Hongshi Yu,Jiaojiao Zhang,Jiafu Hu
出处
期刊:Gene
[Elsevier BV]
日期:2023-11-17
卷期号:895: 148006-148006
标识
DOI:10.1016/j.gene.2023.148006
摘要
The pine-wood invasive species nematode Bursaphelenchus xylophilus causes great forestry damage globally, particularly in Eurasia. B. xylophilus can hybridize with its native sibling, Bursaphelenchus mucronatus, with whom it shares an interestingly asymmetric mating behavior. However, the molecular mechanism underlying interspecific asymmetric mating has yet to be clarified. ntr-1, a nematocin receptor gene, is involved in an oxytocin/vasopressin-like signaling system that can regulate reproduction. Structural analysis using bioinformatics revealed that both Bxy- and Bmu-ntr-1 encode 7TM-GPCR, a conserved sequence. In situ hybridization and qPCR showed that both Bxy- and Bmu-ntr-1 were highly expressed in adult nematodes. Specifically, Bxy-ntr-1 was expressed in the vulva of females and caudal gonad of males, whereas Bmu-ntr-1 was expressed in the postal vulva and uterus of females and the whole gonads of males. Furthermore, RNAi of ntr-1 further demonstrated the biological function of interspecific mating: ntr-1 can regulate mating behavior, lead to male–female specificity, and ultimately result in interspecific differences. In B. mucronatus, ntr-1 influenced male mating more than female mating success, while downregulation of ntr-1 in B. xylophilus resulted in a significant decline in the female mating rate. Competitive tests revealed that the mating rate of the cross significantly declined after downregulation of Bxy♀- and Bmu♂-ntr-1, but no obvious change occurred in the reciprocal cross. Thus, we speculate that ntr-1 may be the key factor behind interspecific asymmetric mating. The current study (1) demonstrated the regulatory function of ntr-1 on mating behavior and (2) theoretically revealed the molecular basis of interspecific asymmetric mating.
科研通智能强力驱动
Strongly Powered by AbleSci AI