Spatial-Temporal Graph Neural Network Based Anomaly Detection

计算机科学 自回归模型 异常检测 人工智能 时间序列 图形 多元统计 系列(地层学) 可预测性 数据挖掘 模式识别(心理学) 机器学习 理论计算机科学 数学 计量经济学 生物 古生物学 统计
作者
Ruoxi Wang,Jianming Zhan,Ying Sun
出处
期刊:Lecture notes on data engineering and communications technologies 卷期号:: 459-471
标识
DOI:10.1007/978-3-031-36118-0_42
摘要

Multivariate time series anomaly detection is an important task in the monitoring system. In practical applications, an efficient and accurate anomaly detection method is particularly important. Recently, the method of anomaly detection based on prediction has made significant progress, but there are still limitations. This paper proposes a paradigm for multivariate time series anomaly identification based on pre-training. The strategy of pre-training is to use Transformer’s encoder to learn the dense vector representation of multiple time series through autoregressive task, so as to enhance the predictability of time series. In the prediction module, we learn the feature dependence of time series through graph attention network, and design an interactive tree structure that takes full advantage of the unique characteristics of time series to capture its time dependence. In addition, our method is well interpretable and allows users to infer the root cause of exceptions. We have proved the effectiveness of our model through extensive experiments. It is significantly superior to the most advanced model in three real data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JJJ发布了新的文献求助30
2秒前
浮游应助啦啦啦采纳,获得10
6秒前
又又完成签到,获得积分10
8秒前
泡泡茶壶o完成签到 ,获得积分10
10秒前
笨笨忘幽完成签到,获得积分0
14秒前
Angenstern完成签到 ,获得积分10
17秒前
CLTTT完成签到,获得积分0
21秒前
LiangRen完成签到 ,获得积分10
25秒前
JJJ完成签到,获得积分10
36秒前
哥哥完成签到,获得积分10
46秒前
dllnf发布了新的文献求助10
49秒前
啦啦啦完成签到 ,获得积分20
58秒前
娟娟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
hdhuang完成签到,获得积分10
1分钟前
tcheng发布了新的文献求助10
1分钟前
dllnf完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
tcheng完成签到,获得积分10
1分钟前
佳言2009完成签到 ,获得积分10
1分钟前
一天完成签到 ,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
啊哒吸哇完成签到,获得积分10
2分钟前
2分钟前
Sunny完成签到,获得积分10
2分钟前
2分钟前
EVEN完成签到 ,获得积分0
2分钟前
木头人发布了新的文献求助20
2分钟前
三杯吐然诺完成签到 ,获得积分10
3分钟前
shacodow完成签到,获得积分10
3分钟前
小学徒完成签到 ,获得积分10
3分钟前
不劳而获完成签到 ,获得积分10
3分钟前
jiunuan完成签到,获得积分10
3分钟前
WL完成签到 ,获得积分10
3分钟前
ll完成签到,获得积分10
3分钟前
瞿人雄完成签到,获得积分10
3分钟前
没心没肺完成签到,获得积分10
3分钟前
1002SHIB完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539095
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566735
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1453020